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ABSTRACT

This dissertation is focused on improving RNA-Seq processing in terms of transcript

assembly, transcript quantification and detection of differential alternative splicing. There

are two major challenges of solving these three problems. The first is accurately deriving

transcript-level expression values from RNA-Seq reads that often align ambiguously to a set

of overlapping isoforms. To make matter worse, gene annotation tends to misguide tran-

script quantification as new transcripts are often discovered in new RNA-Seq experiments.

The second challenge is accounting for intrinsic uncertainties or variabilities in RNA-Seq

measurement when calling differential alternative splicing from multiple samples across two

conditions. Those uncertainties include coverage bias and biological variations. Failing to

account for these variabilities can lead to higher false positive rates.

To addressed these challenges, I develop a series of novel algorithms which are imple-

mented in a software package called Strawberry. To tackle the read assignment uncertainty

challenge, Strawberry assembles aligned RNA-Seq reads into transcripts using a constrained

flow network algorithm. After the assembly, Strawberry uses a latent class model to assign

reads to transcripts. These two steps use different optimization frameworks but utilize the

same graph structure, which allows a highly efficient, expandable and accurate algorithm

for dealing large data. To infer differential alternative splicing, Strawberry extends the

single sample quantification model by imposing a generalized linear model on the relative

transcript proportions. To account for count overdispersion, Strawberry uses an empirical

Bayesian hierarchical model. For coverage bias, Strawberry performs a bias correction step

which borrows information across samples and genes before fitting the differential analysis

model.

A serious of simulated and real data are used to evaluate and benchmark Strawberry’s
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result. Strawberry outperforms Cufflinks and StringTie in terms of both assembly and

quantification accuracies. In terms of detecting differential alternative splicing, Strawberry

also outperforms several state-of-the-art methods including DEXSeq, Cuffdiff 2 and DSGseq.

Strawberry and its supporting code, e.g., simulation and validation, are freely available at

my github (https://github.com/ruolin).

https://github.com/ruolin
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CHAPTER 1. GENERAL INTRODUCTION

Proteins are the basic building blocks of cells. The central dogma of molecular biology

states that the genetic information are passed from gene to transcripts and then to proteins.

The process of making transcripts from DNA is called gene expression. Gene expression

dictates what kinds of proteins are being made and the amount of it. Different cells in a

multicellular organism may express very different sets of genes, even though they contain the

same DNA. Thus studying gene expression is important to understand cell function. The

thesis covers transcript identification, transcript quantification and detection of differential

alternative splicing from RNA-Seq. I first give a quick overview of RNA-Seq and alternative

splicing. Over the years, RNA-Seq has become the state-of-the-art assay to study alternative

splicing from transcriptome level. With this prior knowledge, the core of this monograph,

transcript assembly, quantification, and differential alternative splicing problems, will be

defined and classes of different bioinformatics approaches will be introduced. All of these

methods have their merits and Strawberry i) borrows and combines their strengths, 2)

extends and improves their ideas, and iii) innovates based on what they have not done.

i Borrowing. Strawberry borrows the idea of doing transcript assembly before quantifica-

tion to avoid annotation bias from Cufflinks. Also, Casper is the first to use read counts

on a set of exons (called exon path) to speed up the EM algorithm. Strawberry borrows

the notion of exon path.

ii Extending. Strawberry improves the idea of exon path by modeling it in a parametric

latent class model. Strawberry also extends Alpine’s idea of correcting coverage bias via

a generalized linear model into this exon path model. In addition, Strawberry improves

on Traph’s flow network algorithm to better serve for pair-end reads in assembly.
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iii Innovating. To my knowledge, Strawberry is the first to simultaneously estimate tran-

script abundances and detect differential alternative splicing. Strawberry is also the first

differential splicing analysis method that is not restricted to gene-by-gene detection.

1.1 Alternative splicing

In the late 1970s, (2; 4) showed that infected cells produce several pre-mRNAs which

are much larger than any of the mRNAs present later. Part of pre-mRNA sequences are

removed and the remaining sequences are joint together. Their studies also revealed that

the pre-mRNA produced by adenovirus was spliced in many different ways, leading to

different viral proteins. Since the first dawn of this phenomenon, recognized as Alternative

Splicing (AS), it was quickly found in every eukaryotic cell. AS is a post-transcriptional

regulation mechanism that allows a single gene to produce multiple mRNA transcripts. AS

occurs as a normal phenomenon in eukaryotes and is more abundant in higher eukaryotes

than in lower eukaryotes (10). Researchers have found more than 95% of human genes

and 60% of Drosophila multi-exon genes are alternatively spliced (8). In plants, 61% of

intron-containing genes undergo alternative splicing (25). The ubiquitousness of AS implies

its functional importance. AS generates protein isoforms which have different biological

properties, including protein-protein interaction, subcellular localization, or catalytic ability

(23). In addition to contributing to protein diversity and regulation, some variants of AS

may be nonfunctional and quickly degraded, providing cells another mechanism to regulate

gene expression after transcription but before translation. Like many biological regulatory

processes, however, The complete picture and full roles of AS are still not clear. Some

well known examples include sex-specific splicing in Drosophila (19; 1; 26), regulating gene

expression in response to environmental stimuli and developmental changes in Arabidopsis

(3; 13; 25), and hallmarks of cancer and cancer related regulation in human (17; 11; 29).

Another interesting example to humans is that the stress of exams on a medical student

induces an alternative splice variant of SMG-1 which lacks exon 63 in peripheral leukocytes
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(12). There are several different types of alternative splicing (AS) events and some are more

common than the others. The common events include exon skipping (ES), alternative 3

splice site (A3SS), alternative 5 splice site (A5SS), and intron retention (IR). ES happens

when a cassette exon is spliced out of the transcript together with its flanking introns; A3SS

and A5SS occur when two or more splice sites are recognized at one end of an exon; IR refer

to an intron that remains in the mature mRNA transcript (10). Animals and plants differ in

their most common types of AS events. ES is the most common AS type in humans (> 40%),

but the least common type in plants (5%) (10). Intron retention is the most prevalent AS

type in plants (∼ 40%) but the least prevalent type in humans (21; 15). Alternative 3’SS

and 5’SS account for 18% and 8% of all AS events in higher eukaryotes, respectively (10).

Less frequent, complex events involving the concurrence of same or different simple events

(e.g. mutually exclusive exons). Other less frequent AS events include alternative promoter

usage and alternative polyadenylation (10).

1.2 Next-gen sequencing of transcriptome

Sequencing is a process of digitalizing biological genetic materials and converting them

to human readable strings. The so-called Next-Gen Sequencing is a high-throughout and

low-cost alternative to the first generation Sanger Sequencing. Although various Next-Gen

sequencing platforms or instruments exist in today’s market, Illumina dominates over 90%

of the market. Without mentioning a specific sequencing technology, I refer to Illumina in

this monograph. Illumina sequencer outputs short nucleotide strings (called reads), ranging

from 100bp - 300bp. These reads can appear in pairs if two reads are sequenced from the

same underlying DNA (or cDNA) fragments but from different ends.

RNA-Seq is the short term for RNA-Sequencing which sequences the transcriptome.

One field in RNA-Seq is the studying of gene expression, i.e., the amount of mRNA copies

a gene produces. Before the NGS era, DNA microarray is a powerful tool for analyzing

gene expression and alternative splicing (16). However, one of the drawbacks of microarray
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technology is that it requires prior knowledge of the genomic sequencing and splicing models

of the organism of interest. This makes it difficult to study alternative splicing since it

must require probes that span unique splicing junctions. Applying Next-Gen Sequencing

on RNA, named RNA-Seq (31), has changed the game completely as it allows single base

resolution of a complete transcriptome and is also applicable to non-model organisms, which

are difficult for microarrays. RNA-Seq has made many problems more accessible to study,

e.g. complete assembly of transcriptome, identification of new splicing variants, compared

to hybridization-based technologies such as microarrays.

However, analyzing RNA-Seq data is difficult and not straightforward. This creates a

huge demand to develop bioinformatics tools or pipelines which can analyze and interpret

these data in a straightforward and useful way. Since 2008, we have witnessed a boom in

RNA-Seq bioinformatics tools. A summary of RNA-Seq bioinformatics tools on a Wikipedia

page has listed more than 400 tools, covering almost every aspect of RNA-Seq data analysis,

e.g. quality controls, alignments, assembly, expression and differential analysis, visualization

and etc. In this monograph, I focus on transcript reconstruction (which is assembly +

quantification), and differential alternative splicing detection. The success of transcript

reconstruction depends on the success of a series of upstream bioinformatics steps such

as raw read processing and alignment as well. However, they are not the focus in this

monograph. Note the word isoform is different from transcript in this monograph. I use

isoform to refer to gene isoform(s) which are the transcript(s) that come from a single locus.

The sets of isoforms form a partition of the set of transcripts.

1.3 Problem formulations

Problem 1. Transcript reconstruction from single sample RNA-Seq Given

a set of RNA-Seq reads from single biological sample and optionally other supplementary

inputs (for example, genome sequences, annotation models), the problem is to identify all

expressed transcripts from this sample, i.e., transcript identification, and associate each

https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools
https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools
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transcript with a positive expression value that can be used to compared within the sample,

i.e., transcript quantification.

This problem describes an algorithm that takes a sample of RNA-Seq reads and outputs

a file that defines transcripts and their expression such that a transcript can be compared

to other transcripts in terms of the expression. How a transcript is defined biologically is

out of the scope of this thesis. From an algorithmic point of view, I consider a transcript

as an array of genomic intervals. Each interval has information such as chromosome, start

position, end position and associated meta data such as the nucleotide sequences, and

whether it is an exon, UTR and etc.. (24) uses the word transcript reconstruction to refer

to both assembly and quantification and I follow their standard in this dissertation.

Based on whether an algorithm takes additional inputs, several workflows exist. Firstly,

if no additional inputs are given and the raw reads are the only inputs, (7; 32; 22) can

perform de-novo assembly using the unmapped reads into transcriptome, but they usually

do not estimate transcript expression. However, people can always use other quantification

tools to calculate the expression of de-novo assembled transcripts. The second type of

workflow uses only reference genome. These workflows usually align RNA-seq reads to the

reference genome using splice aware aligners. After the alignment, methods may assemble

transcripts and quantify the expression in a sequential manner or simultaneously. This

kind of methods will be called genome-dependent methods in this monograph. The third

type of workflow uses either reference genome plus annotation, or equivalently a reference

transcriptome. This type of workflows can not detect new transcripts and I refer to this

kind of methods as annotation-dependent.

Another important aspect from problem 1 is the expression metric. A well-known ex-

pression metric for transcript is Reads Per Kilobase of transcript per Million mapped reads

(RPKM). To my knowledge, RPKM was first proposed in (18). RPKM was soon adopted

by the community but was later extended as Fragments Per Kilobase of transcript per Mil-

lion mapped reads (FPKM) by (28) to adjust for pair-end reads. FPKM or RPKM of any
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transcript is calculated as FPKM = c·109

l·d , where c is the read counts for that transcript, and

l is the transcript length and d is the total number of mapped reads in a sample. Almost at

the same time, (14) proposed another metric called transcripts per kilobase million (TPM).

TPM has been considered as a better metric for comparing transcript expression across

samples than FPKM or RPKM (30). TPM can be calculated through FPKM or RPKM, by

TPMi = FPKMi · 106/
∑

i FPKMi. This extra normalization makes TPM a better metric

for comparison across samples since the sum of TPMs in each sample are the same. For a

single sample, TPM and FPKM would be equivalent.

The difficulty of solving transcript reconstruction problem arises from the ambiguity of

reads assignment to isoforms uniquely. This read assignment challenge is twofold: statisti-

cally, it often requires high-dimensional mixture models, and computationally, it needs to

process datasets that commonly consist of tens of millions of fragments (20). To make mat-

ters worse, the assignment problem can not faithfully rely on gene annotation as transcripts

are often discovered in new RNA-Seq experiments. In the next chapter, I will give a brief

but comprehensive overview of the existing methods of tackling the transcript quantification

problem.

Problem 2: Differential alternative splicing from multiple RNA-Seq samples.

Consider a RNA-Seq experiment that involves two experimental conditions. For each con-

dition, replicate RNA-Seq libraries are generated and sequenced. The goal is to identify

differentially spliced transcripts and/or differential AS events across the two conditions. The

set of genes and isoforms structures, i.e., exon-intron structures, known as gene annotation

or just annotation, is known a priori.

The problem 2 identifies changes in the relative abundances of transcripts between two

experimental conditions This concept should be distinguished from differential transcript

expression (DTE). DTE compares the expression level of a transcript in each condition and

calls significance if the change of seeing such a change is small enough under an appropriate

statistical model (27). DTE can be considered as a natural progression of differential gene
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Table 1.1 Abbreviations and acronyms.

AS Alternative Splicing

ASM Alternative Splicing Module

DTE Differential Transcript Expression

DGE Differential Gene Expression

DAS Differential Alternative Splicing

FPKM Fragments Per Kilobase of transcript per Million mapped reads

RPKM Reads Per Kilobase of transcript per Million mapped reads.

TSS Transcript Start Site

MPC Minimum Path Cover

GLM Generalized Linear Model

CMPC Constrained Minimum Path Cover

NB Negative Binomial

TPM Transcripts Per kilobase Million

PSI Percent of Splice In

FDR False Discovery Rate

DAG Directed Acyclic Graph

TSS Transcription Start Site

MAP Maximum A Posteriori

MCMC Markov Chain Monte Carlo

PSI Percent Splice in

AUC Area Under the Curves

ROC Receiver Operating Characteristic

expression (DGE) problem. Both DTE and DGE are important, well-studied topics in RNA-

Seq. However, I will not discuss them in this monograph. Differential alternative splicing

(DAS) is, instead, interested in a group of transcripts (>= 2) and the change of relative

abundances across conditions. In the case of a group of two isoforms, DAS is equivalent

to the simple notion of isoform switching which is well-defined as the predominant isoform

switches from one to another when the condition is changed.

DAS can be analyzed at the level of full-length transcripts or at the level of single splicing

events (for example inclusion or exclusion of a particular cassette exon) (5). Therefore,

methods for detecting DAS may be categorized into exon-centric models and transcript-

centric models. Event-centric models focus on individual AS events across conditions while

transcript-centric models seek to identify alternatively spliced isoforms. The prototype of
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event-centric versus transcript-centric nomenclature was first introduced in (9) and they

used exon-centric analyses to refer the inference on single alternative exon and isoform-

centric analyses for detection of significant changes in isoform composition. (6) extended

exon-centric methods to event-centric methods to refer to methods that can detect one or

many AS events. Due to the limitation of read length of short read technologies, such

as Illumina, event-centric models are designed to apply differential analysis directly on

unambiguous counting units (i.e., exons or exon-exon junctions) rather than the whole

transcripts. If a counting unit is differentially expressed (usually in terms of read count), it

can be further translate to AS events. Although the event-centric models do not directly

address the issue of quantifying isoform abundances, the reads at counting units can fully

reflect isoform expression as long as there is no isoform that can be composed by the

combination of other isoforms (26). Instead of transforming the question into detecting

differential usage of counting units, transcript-centric methods seek to directly compare the

relative transcript abundance across samples and/or conditions.

1.4 Structure of this thesis

The rest of this dissertation is organized in the following way. Chapter 2 includes a

published literature review of relative bioinformatics methods for differential alternative

splicing detection using RNA-Seq. Although tremendous success has been made in this

field, I have witnessed same weakness and things that can be improved from the status

quo. Therefore, chapter 3 introduces the transcript assembly and quantification method

of Strawberry for a single sample. In chapter 3, both real and simulated data are used

to benchmark Strawberry’s result against other state-of-the-art methods. The differential

alternative splicing detection model is given in chapter 4, which also includes results of

benchmarking against other state-of-the-art methods using both simulated and real data.

Chapter 5 contains the conclusion and future works.
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Abstract

Alternative Splicing (AS) as a post-transcription regulation mechanism is an important

application of RNA-seq studies in eukaryotes. A number of software and computational

methods have been developed for detecting AS. Most of the methods, however, are designed

and tested on animal data, such as human and mouse. Plants genes differ from those of

animals in many ways, e.g., the average intron size and preferred AS types. These differences

may require different computational approaches and raise questions about their effectiveness

on plant data. The goal of this paper is to benchmark existing computational differential

splicing (or transcription) detection methods so that biologists can choose the most suitable

tools to accomplish their goals. This study compares the eight popular public available

software packages for differential splicing analysis using both simulated and real Arabidopsis
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thaliana RNA-seq data. All software are freely available. The study examines the effect of

varying AS ratio, read depth, dispersion pattern, AS types, sample sizes and the influence of

annotation. Using a real data, the study looks at the consistences between the packages and

verifies a subset of the detected AS events using PCR studies. No single method performs

the best in all situations. The accuracy of annotation has a major impact on which method

should be chosen for AS analysis. DEXSeq performs well in the simulated data when the

AS signal is relatively strong and annotation is accurate. Cufflinks achieve a better tradeoff

between precision and recall and turns out to be the best one when incomplete annotation is

provided. Some methods perform inconsistently for different AS types. Complex AS events

that combine several simple AS events impose problems for most methods, especially for

MATS. MATS stands out in the analysis of real RNA-seq data when all the AS events being

evaluated are simple AS events.

Background

Alternative splicing (AS) is a post-transcriptional regulation mechanism that allows a

single gene to produce multiple mRNA transcripts. Some of the roles of AS include reg-

ulating gene expression in response to environmental stimuli and developmental changes

(1; 2; 3). In addition to contributing to protein diversity and regulation, some variants of

AS may be nonfunctional and quickly degraded, providing gives cells another mechanism

to regulate gene expression after transcription but before translation. AS occurs as a nor-

mal phenomenon in eukaryotes and is more abundant in higher eukaryotes than in lower

eukaryotes (4). More than 95% of human genes and 60% of Drosophila multi-exon genes

are alternatively spliced. In plants, 61% of intron-containing genes undergo alternative

splicing(3).
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Although there is no consensus classification of AS types, the five standard types are

skipped exon (SE), alternative 3 splice site (A3SS), alternative 5 splice site (A5SS), mutually

exclusive exons (MXE), and intron retention (IR) (6). Animals and plants differ in their

most common types of AS events. SE is the most common AS type in humans (> 40%), but

the least common type in plants (5%) (4). Intron retention is the most prevalent AS type

in plants (∼ 40%) but the least prevalent type in humans (7; 8). This difference suggests

plants and animals may recognize exons and introns in different ways (7). Also, AS does

not always occur as one of the simple events described above; combinations of multiple

simple AS events are common. In Arabidopsis, multiple exons may be skipped together

and/or exon skipping occurs in the company of alternative 5’ and/or 3’ splice sites (8).

Such complex AS events are abundant in Arabidopsis latest annotation version, TAIR 10

(9).

Some evidence also suggests that plants and animals may regulate AS in different ways.

For examples, plants possess nearly double the number of SR proteins as compared to

nonphotosynthetic organisms(10). SR stands for serine(S)-arginine(R)-rich proteins, a con-

served family of pre-mRNA splicing factors. Interestingly, most SR proteins (14 of the 18

Arabidopsis SR protiens) (11) are themselves alternatively spliced and some studies have

linked the AS of several SR proteins (e.g., SR45,SR45a,SR1/SR34, SR30) to environmental

signals. AS is believed to play a critical role in helping plants adapt to their environment

and may increase our understanding of plant and crop phenotypes (3).

The advent of RNA-seq has increased the observed frequency of AS in plants from 30%

(12; 13; 14) in the pre-NGS era to 61% (8). As RNA-seq becomes the new standard for

studying gene and transcription expression, a key problem is to detect condition-specific

differences, such as differential expression and differential alternative splicing. To date,

dozens of methods for detecting differential AS using RNA-seq have been published. Most

of the methods are designed for and tested on human, mouse and other mammals. Their

performance on RNA-seq data from plants remains in question due to the differences in AS
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machinery between animals and plants. Recent review papers (15; 16; 17) compare differen-

tial alternative splicing detection methods with respect to methodology but do not evaluate

performance under realistic conditions. Another two publications (18; 19) benchmark meth-

ods and algorithms for transcript reconstruction and quantification. To our knowledge, this

study is the first to systematically compare differential alternative splicing methods using

RNA-seq in plant systems.

Selection criteria and limitation of this study

This work benchmarks eight popular methods for differential AS according to the three

criteria given below: effectiveness, biological replicates and software engineering.

• Effectiveness: the method should detect differential AS across samples. Note that

this is not necessarily equivalent to isoform quantification problem as changes in the

absolute isoform expression do not necessarily imply differential alternative splicing

(15).

• Biological replicates: the selected method should be able to take advantage of biolog-

ical replicates in the RNA-seq data sets.

• Software engineering: the method has to be implemented as a usable and robust

program so that a scientist with limited computational skills can run the program

regardless of understanding the theory behind it.

For example, under these criteria, some methods are ruled out for inclusion in this study.

E.g., SpliceTrap (20) only quantifies alternative splicing within a single condition and MISO

(21) and PSGInfer (22) do not support biological replicates. Our list of programs is not

exhaustive; however, we have selected a set of programs which represent a variety of ap-

proaches. Due to our limited human resources and computational power, the current ver-

sions of FDM(23) and JuncBase(24) met our criteria but were excluded from this study.

FDM uses a splice graph representation of aligned RNA-seq data and Jensen Shannon
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Divergence (JSD) to measure the difference in relative transcript abundances. JuncBase

uses exclusively reads spanning exon-exon junctions. These concepts are well represented

by the other methods we have compared in this study. Importantly, our testing pipeline

and the input data needed to run the simulation are available in a Github repository,

https://github.com/ruolin/ASmethodsBenchmarking. The whole pipeline is documented,

interested readers can repeat the study and test the results with their preferred differential

AS detection tools.

Method Classification

Methods for detecting AS may be categorized into two quantification schemas: count-

based models and isoform resolution models (Figure 1). These two terms are based on

the classification nomenclature defined by Pachter in (17). We selected eight methods and

evaluated them based on simulated and real data. Six of them are from count-based models:

DEXSeq (25), DSGseq (26), SplicingCompass(27), MATS(28), rDiff-parametric(29) and

SeqGSEA(30). The remaining two, Cufflinks (31) and DiffSplice (32), use isoform resolution

models. A brief overview of the eight methods follows.

Count-based models

The count-based models are based on the methods used to quantify transcripts with sin-

gle isoforms. The number of reads falling on a transcript (adjusted for transcript length and

the total number of mapped reads), like RPKM (Reads Per Kilobase per Millions of reads

mapped), is used as an estimate for abundance (17). Count-based models are commonly

used in differential gene expression. For differential splicing, the count-based models are

modified to count reads in smaller counting units (i.e., exons) rather than the whole tran-

script regions. Also the focus changes to the differential expression of the counting units.

Count-based models usually configure each gene into a single representation consisting of

counting units. Counting units can be full or truncated exonic regions (e.g., DEXSeq and
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DSGseq), or junction regions (MATS). Although the count-based model does not directly

address the issue of quantifying isoform abundances, the DSGseq authors prove that the

reads at counting units can fully reflect isoform expression as long as there is no isoform that

can be composed by the combination of other isoforms (26). The count-based model can be

seen as testing of two possible splicing outcomes, inclusion and/or exclusion, of each count-

ing unit. Some papers refer to this model as an event-based model (15). Methods using the

count-based model are usually dependent on existing annotation on the gene structure and

typically employ Poisson, generalized Poisson or Negative Binomial (NB) distributions to

model the read counts on counting units. For RNA-seq, the NB distribution is considered

better suited for the analysis of biological replicates than the Poisson distribution, as it is

able to account for overdispersion in replicate counts (33; 34).

SeqGSEA(30) and DSGseq (26) are examples of count-based models. These two methods

are similar in many ways. Given a known set of transcripts at a locus, they both flatten

these transcripts into a union transcript consisting of counting units (called mathematical

exons in DSGseq and sub-exons in SeqGSEA). Both DSGseq and SeqGSEA model the

number of reads that fall on the counting units as NB random variables after adjusting for

overall gene expression. For a given gene, they calculate p̂ij as the expected read count

fraction of counting units i in group j and variance of p̂ij . Both methods define a gene-wise

statistic to measure the difference in the expected read count fraction across two conditions

by averaging over all counting units and adjusting for variance. Both methods mention that

the null distribution is hard to obtain based on such statistics. SeqGSEA uses a permutation

based approach to calculate the p-values while DSGseq just reports the statistics and does

not calculate the p-values. Both DSGseq and SeqGSEA report which gene is alternatively

spliced. A novel AS gene can be predicted only if an annotated constitutive exon is found

to be a skipped exon. DSGseq can also tell you where the skipped exon may actually occur.

Like SeqGSEA and DSGseq, DEXSeq (25) transforms known gene models to sets of

counting units (called counting bins in DEXSeq) based on any possible splice sites. The
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difference is that DEXSeq uses a generalized linear model (GLM) to detect the differential

usage of counting units. The GLM in DEXSeq assumes a NB model for the counts. DEXseq

reports which counting unit is alternatively used across conditions and, like SeqGSEA and

DSGseq, a novel skipped exon can be predicted only on an annotated constitutive exon.

The rDiff (29) package consists of two methods: rDiff-parametric and rDiff-nonparametric.

rDiff-parametric is a count-based model. Unlike other count-based methods it only makes

inference on regions that are not shared among all isoforms (called alternative regions).

rDiff-parametric uses the NB distribution to model the number of reads on counting units

to account for biological variance. Unlike SeqGSEA and DSGseq, the variance is calculated

from an empirical variance-mean relationship (29). A p-value is calculated on each alter-

native region within a gene, and Bonferroni(BF) correction is used to obtain a genewise

p-value. As a result, rDiff-parametric reports which gene is a significant AS gene but no

novel AS gene can be found. The BF correction is known to be very stringent,which could

explain why rDiff-parameteric has very low recall but high precision (see results section).

MATS (28) first retrieves all AS events from input gene models and annotates the iden-

tified AS events with the corresponding AS types (e.g. SE, IR, A3SS). More specifically, it

cannot detect novel AS events and only retrieves the simple AS events, not complex ones.

MATS calculates a statistical metric called exon inclusion level, ψ, which is the proportion

of the reads that exclusively support one outcome of the events to reads that exclusively

support another outcome of the identified events. The exon inclusion level is always between

0 and 1. Then, the posterior probability of the difference of exon inclusion level across two

samples which is larger than a user-defined cutoff, denoted p(|ψ1 − ψ2| > c | data), is calcu-

lated. MATS reports which AS event is significant rather than which gene is alternatively

spliced. MATS differs from other count-based model methods in that it uses Bayesian ap-

proaches. It is also the only method that does not assume independence of two biological

conditions. A bivariate uniform prior is used to model the dependence. Information across

genes is borrowed in the process of estimating the common prior. Although the method in
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MATSs original paper is only designed for a two sample comparison, the latest version of

MATS (3.0+) accepts multiple replicates. However, it is unclear how the program models

biological variability.

Like DEXSeq and DSGseq, SplicingCompass (27) uses a union transcript model for

each gene. However, it does not utilize any statistical model based on the counting process.

SplicingCompass first constructs vectors of read counts on exons as well as on splicing

junctions for each gene and sample, then calculates pairwise geometric angles between two

vectors. Finally, a one-sided t-test comparing the within condition angles and between

condition angles is carried out for each gene. SplicingCompass reports which gene is AS

gene based on the t-test. Therefore a novel AS gene can be found if the aforementioned

test turns out to be significant. Again only SE can be detected.

Isoform resolution models

Isoform resolution models (also called multi-read models (17)) are multi-isoform mod-

els. Instead of transforming the question into detecting differential usage of counting units,

they seek to directly solve this problem by comparing the relative isoform abundance across

samples and/or conditions. The estimation of the isoform proportion vector q is usually

done by maximizing a likelihood function L(q|observing a set of reads alignments). Max-

imizing this likelihood function is equivalent to maximizing the likelihood of selecting a read

or fragment from a transcript (31). Isoform resolution models try to assign reads or frag-

ments to the transcripts they came from at the cost of introducing additional uncertainty

in read assignments due to the overlap between isoforms. In count-based models there is

no ambiguity in assigning reads toward counting units. It is worth mentioning that this

question is also connected to the question of transcriptome assembly as novel transcripts

are found in nearly every RNA-seq study (17).

Cufflinks (31) and DiffSplice (32) are examples of the isoform resolution models. Cuf-

flinks contains three independent but connected programs: Cufflinks, Cuffmerge and Cuffd-



www.manaraa.com

22

iff. Cufflinks assembles and quantifies the aligned reads while Cuffdiff performs differential

testing. Cufflinks uses a linear model (31) which includes a specific parameter for frag-

ment length. This differentiates Cufflinks from other methods by allowing Cufflinks to take

advantage of insert size information in paired-end data. In this sense, Cufflinks is more

appropriate for paired-end reads. The estimate of relative abundance of a transcript is re-

ported in the form of FPKM (fragments per kilobase per million mapped fragments) which

is equivalent to RPKM in the single-end case. Cuffdiff performs tests for relative isoform

abundance changes (called post-transcriptional overloading in the Cufflinks paper) using a

one-sided t-test of the Jensen-Shannon Divergence metric (31). Cufflinks is able to assemble

transcriptomes and is thus less dependent on the accuracy of gene annotation.

Rigorously speaking, DiffSplice(32) is not “Isoform resolution” but “alternative paths

resolution”. In DiffSplice, the alternative paths stand for the paths from the Alternative

Spliced Module (ASM) in spliced graphs and each ASM has at least two alternative paths.

An ASM is a region in splice graphs where isoforms differ from each other. ASM seeks

to minimize the ambiguity in isoform resolution by only considering regions that are not

shared by all isoforms. DiffSplice tests differential splicing on each ASM instead of whole

transcripts. The relative abundances of alternative paths are estimated using the maximum

likelihood method. The difference of the relative abundances compositions is measured

using Jensen-Shannon Divergence metric (JSD). Both the DiffSplice and Cufflinks models

are extensions of the model of (35). Cufflinks extends the model to the paired-end case while

DiffSplice restricts it to ASMs. Like Cufflinks, DiffSplice is also capable of assembling the

aligned reads onto the transcriptome. Therefore, both programs are able to detect novel AS

events that are not in the annotation. However, the Cuffmerge from Cufflinks packages can

merge the assembly with annotations to provide gene models with higher confidence while

no previous knowledge of gene models is used by DiffSplice. In other words, annotation is

not used in DiffSplice.
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Results and discussion

These differential AS detection methods were first evaluated using simulated data with

known ground truth, where we could control the level of differential splicing across conditions

and other factors that may affect detection. The NB distributions were used to simulate

read counts on genes. The mean and dispersion parameters for the NB distributions were

estimated from heat shock data (36). The 5885 genes that are known to have at least two

splice variants in the Arabidopsis TAIR 10 reference annotation were focused on in the

simulation studies. Using our custom simulation pipeline (see Additional file 1), a set of

2000 genes was randomly chosen from the overlaps between the 5885 known AS genes and

genes that have non-zero expression in real data sets. These 2000 genes were simulated to

be alternatively spliced and are referred to as “true AS genes”. Details about the simulation

settings and procedures can be found in the Methods section.

In the simulation study, we evaluated the robustness of the methods by varying the

degree of differential splicing, read depths, sample sizes and dispersion setting in different

conditions. We set High, Medium and Low levels for AS ratio, two dispersion patterns

and three levels of read depth (100x, 60x and 25x). In addition, we have compared the

computational time required for running the analysis (Additional file 1: Table S1). We used

two dispersion settings in the simulation. One allows the two conditions to use two different

dispersion parameters in the NB distributions which are estimated from two replicated real

RNA-seq data sets, whereas the other forces both conditions to have the same dispersion

parameter which is estimated from the pooled RNA-seq data sets. We call these two settings

different dispersion pattern versus same dispersion pattern (denoted by Diff vs Same). We

also investigated the effect of sample size, from 3 to 8 samples per conditions. A simple

notation HighDiff
100x means a condition of read depth at 100, different dispersion pattern and

high AS ratio across conditions.

All of these evaluations were carried out in terms of the Receiver Operating Characteris-

tic (ROC) curves and the Area Under the Curve (AUC) metric. The ROC curve depicts the
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true-positive rate (TPR) of a method for different false-positive rates (FPR) by varying the

threshold for given scores. TPR is defined as the proportion of the events that are known

to be differentially spliced that test as positives. Similarly the FPR is the proportion of the

events that are known not to have differential splicing that test as positives. As almost all

AS detection software packages tightly control FPR, we restricted the ROC curves to the

range of 0 − 0.2 (Figure 2-4). The area under the ROC curve, or AUC, is the numerical

measurement that summarizes the ROC curves. Here we calculated the AUC under the

restricted ROC curves. Methods with larger AUC have better performance. The results of

all simulation studies under the measurement of AUC are summarized in Table 1.

As ROC curves and AUC measure the discrimination power between non-differentially

spliced (non-DS) gene and differentially spliced (DS) gene over an interval, scientists are

often interested in the discrimination power at a single cutoff point. Therefore the recall

and precision at a Padj = 0.05 cutoff were used as a additional set of evaluation metrics (Padj

stands for multiple testing corrected p-value). Recall is equivalent to TPR while precision

is the proportion of the events that test as positives that are actually true discoveries.

Precision is also known as 1 − false discovery rate. Evaluating on precision examines

whether the methods are able to control the FDR at the claimed 0.05 level. DSGseq does

not return p-values and was excluded from this evaluation and SeqGSEA did not report any

gene under FDR = 0.05 when the sample size was 3. The results of other seven methods

under the measurement of recall and precision or FDR at Padj = 0.05 are summarized in

Table 2.

For the real data, we first compared the results obtained by the different methods

in terms of absolute number of significant AS gene calling, the overlap of results across

software and the concordance of gene rankings. We further compared these results to a list

of experimentally validated genes that are known to be alternatively spliced in response to

ambient temperature changes. Finally we carried out an semi-RT-PCR study and compared

the results of the computational methods using RNA-seq to the results from RT-PCR.
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The effect of different levels of AS ratio in conjunction with dispersion pattern

Since the difference required between two isoform compositions to be biologically sig-

nificant enough to call as differential splicing is an open question, we defined a parameter

PALT (Percentage of ALTernative isoform) to control the level of differential splicing in our

simulation. PALT , whose range is from 0 − 1, simply represents the relative abundances

of alternative isoforms for given genes. For multi-transcript genes, we randomly chose one

transcript as an alternative isoform while the rest of isoforms remained as standard isoforms

across conditions. For each of given genes, all standard isoforms have relative abundances

which summed to 1−PALT . The PALT for 2000 true AS genes was set to 0.2 in the control

group and 0.4, 0.6, 0.8 in the three treatment groups, corresponding to low, medium and

high AS ratio levels. We investigated the effect of varying the AS ratio level under two

dispersion patterns. As a result we carried out 6 simulation studies and denoted them in

the format of HighDiff
100x, representing the situations for high AS ratio, different dispersion

patterns for two conditions and 100x read depth.

The restricted ROC curves of the 8 selected methods based on 3 simulation studies on

different dispersion patterns are shown in Figure 2. As PALT changed from 0.8 to 0.4, the

difference between the isoform compositions under the two simulated conditions became

smaller. All methods lost their discrimination power as the signal of differential splicing

became weaker. The results from simulation studies with the same dispersion pattern

were similar and are shown in the (Additional file 1: Figure S9). When two simulated

conditions had different dispersion patterns, DEXSeq performed well in high and medium

AS ratio situations but not in the low AS ratio situation.(Figure 2 and Table 1). When two

conditions had the same dispersion pattern, DSGseq consistently performed the best out of

the 8 methods (Table 1). As we focused on the low AS ratio in both dispersion situations,

Cufflinks performed the best.

Both AUC and recalls were affected by the change of the AS ratio but the effect on

recalls seemed to be larger. Taking Cufflinks as an example, the recall rates were 57%,
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40% and 3% at high, medium and low levels of differential splicing respectively (Table 2).

However the AUC dropped only 14% from high to low alternative splicing ratio (Table

1). It is not surprising that AUC is a more robust measurement than recall and precision.

But it is not uncommon for people to use a single cutoff point, e.g. declare significance at

FDR = 0.05. In this sense, the low AS ratio has a severe impact on the discrimination power

(Table 2). DiffSplice achieved the highest recall in both LowDiff
100x and LowSame

100x . However,

its performance under the measurement of AUC (Table 1) was far from satisfactory since

many AS events were not detected by using ASM and some detected ASMs were simply

artifacts. In the baseline simulation study HighDiff
100x, 2123 ASMs were reported by DiffSplice

and 94 of them resided at least 1kb away from coding regions. 4 ASMs were even longer

than the longest gene (which is 31257 nt long) in Arabidopsis TAIR 10 model.

When considering the ability to control for false discoveries, all methods except MATS

performed more poorly when the AS ratio became smaller (Table 2). Only MATS was

able to control the FDR at all levels of AS ratio and dispersion pattern. SplicingCompass

and rDiff-parametric could control the FDR at the desired 0.05 level in the simulation

studies with high AS ratio but failed at low AS ratio, low levels of coverage. DEXSeq and

rDiff-parametric’s abilities to control FDR improved if the data shared the same dispersion

pattern across conditions. With same dispersion pattern, rDiff-parametric was able to

perfect control the FDR in all three AS ratios while DEXSeq achieved the desired FDR level

on low AS ratio but not on high AS ratio. Although DEXSeq had the best performance in

terms of AUC, it did a poor job in controlling the FDR (Table 2).

Detecting novel splicing events

We simulated RNA-seq reads using the latest Arabidopsis TAIR 10 gene sequences and

models. This implies that no AS event is novel to this annotation. Theoretically methods

that use annotation information should be able to find all candidate AS regions provided

the annotation is correct. However in a real RNA-seq study, even in model organisms,



www.manaraa.com

27

there may be many novel splicing events. To simulate this case, we deliberately removed

the mRNA model of the alternative transcripts from annotation for the set of true AS

genes. The relative abundances of alternative transcripts are controlled by PALT and

are the dominant force in the simulated AS events. By running the software using this

incomplete annotation, we evaluated their abilities to detect novel splicing events. This

comparison was evaluated on the baseline simulation study HighDiff
100x (Figure 3). Except for

DiffSplice, the performances of all other methods were degraded. Because DiffSplice does

not use annotation information, its performance did not change. Overall, Cufflinks was more

robust to incomplete annotation than other methods. MATS and DEXSeqs performances

dropped significantly, suggesting that these two methods are very dependent on accurate

annotation.

The effect of different AS types

Based on the gene models and sequences of the 5885 annotated AS genes in TAIR 10

annotation, we simulated 2000 true AS genes to be differentially spliced. However, most

of the genes (1335 out of 2000, 67%) have more than one AS type. This made testing the

performance in terms of the effect of different AS types difficult. Also as some methods,

e.g. MATS and DiffSplice, test on individual events or local regions while others work on

the gene level, the previous comparisons were not based on common ground. To overcome

these problems, we picked out 1755 genes that have exactly two transcripts and a single

splicing event from the 5885 genes. We then reevaluated all methods on these 1755 genes in

the baseline simulation study. This equated the detection on a gene level to the detection

on a splicing event. We classified these 1755 genes into three new sets by their splicing

event types which include exon skipping, intron retention and alternative donor/acceptor

sites (Figure 4). We treated alternative donor sites and acceptor sites together as a single

class because there is almost no difference in detecting them from mathematical and com-

putational perspective. 803 genes had an alternative donor or acceptor event, 850 showed
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intron retention and 102 demonstrated exon skipping and about one third of genes in each

new set were pre-selected AS genes (274, 275 and 38 respectively). We evaluated the eight

methods in each category. This is a simplified scenario where a gene has exactly one AS

event.

DEXSeq achieved the highest AUC in two of the three simple event classes, IR and SE,

(Table 1). In these two cases, the exons or introns are either included or excluded as a whole.

However in the cases of A3SS and A533, the counting units could be as short as several bps.

DEXSeq may not have enough read counts to perform reliable statistical tests in such short

regions. We observed that Cufflinks which uses isoform-resolution models perform the best

for A3SS and A5SS. When the complex AS events were excluded MATS’s improvement

was very significant. The averaged AUC for MATS was 0.5763 when complex AS events

were included. It, however, averaged at 0.9143 in the simplified scenarios (Table 1). This

agrees with our observation that MATS is not capable of discovering complex AS events.

In the simple scenario MATS acquired the highest recall and lowest FDR at Padj = 0.05

threshold in all simple AS events (Table 2). As we looked at the individual types of AS

events, DSGseq performed well for detecting IR but not so well on other splicing types.

Similarly, Cufflinks performed well at A3SS and A5SS but poorly with other AS types,

indicating a bias in detecting different AS types.

The effect of sample sizes and read depth

The increase in sample size from 3 to 8 did not have a significant impact on the AUC

statistics and the methods’ rankings based on the AUC (Table 1). Even for the recall and

precision statistics (Table 2), the increase in sample size had a small impact for all methods

except for SplicingCompass and SeqGSEA. Recall for SplicingCompass increased from 14%

to 50% when the sample size increased from 3 to 8. SeqGSEA was not statistically significant

at FDR = 0.05 for a sample size of 3 but achieved a recall of 95% at the cost of having

a low precision (58%) in a sample size of 8. However the ROC curves and AUC statistics
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for SeqGSEA were almost the same for the different sample sizes (Additional file 1: Figure

S10). A possible explanation is that the permutation-based approach used in SeqGSEA

may scale the Padj according to the sample size. Therefore, we would recommend a sample

size between 4 to 7 for using SeqGSEA.

Most methods were robust to different read depths or coverage of RNA-seq with a minor

drop of discrimination power as read depth decreased (Table 1 and Additional file 1: Figure

S11). However it is interesting to note that Cufflinks achieves its best discrimination power

at RD60 and ranked 1st among all methods at this read depth (Table 1). This may suggest

that Cufflinks performs better when read depth is around 60.

Real RNA-seq data from Arabidopsis heat shock experiment

In addition to the simulated data, we also evaluated the methods on heat shock RNA-

seq data sets (36). Three RNA-seq samples were generated from heat shock T1 group and

two from control T1 group (See Methods for a description for the heat shock data sets).

All the eight methods except for DiffSplice are able to handle the unbalanced design with

different sample sizes. For DiffSplice, we took out one sample from the heat stress group to

make it a balanced design. All genes found to be AS at the threshold of FDR = 0.05 were

consider statistically significant. DSGseq does not report a p-value and therefore was not

used for this comparison.

We first compared the number of significant AS events found by each method (Table 3).

SeqGSEA did not find any gene with significant AS. This result was consistent with our

simulation studies that SeqGSEA usually requires a sample size larger than 3 to declare

significance at the FDR = 0.05 level. For the rest of the methods, the highest number of

significant AS events was found by Cufflinks, followed by MATS and DEXSeq. The most

conservative method was SplicingCompass as shown in Table 3.

We also examined the overlaps of the set of significant AS genes found by each methods

(Figure 5, Table 3). From Table 3, we noted that SplicingCompass was very conservative
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(having the smallest number of significant DS genes) and was also very “unique”in that

it almost did not share any significant DS genes with other methods. The Venn diagram

(Figure 5) did not include SplicingCompass. The results showed that the methods were

very different from each other in that there was no gene that found by all five methods and

that the proportion of genes that were found exclusively by each method was more than

half. rDiff-parametric had 48.4% genes that were shared by at least one other methods.

It was the only one that was close to 50% level. DEXSeq shared 40% of rDiff-parametric

reported DS genes.

We further compared the results of all eight methods by investigating the correlation of

gene ranking scores (computed as previously). We computed the Spearman rank correlations

between all pairs of the eight methods and visualized it using a heat map (Figure 6).

The correlations were calculated based on the ranking scores from 600 common genes that

were reported by all methods. The highest correlation was observed between DSGseq and

SeqGSEA as both methods use NB statistics (see Methods). Overall, the correlations were

very low which indicated that these methods tended to rank genes differently with respect

to alternative splicing.

A list of experimentally validated AS genes which are known to exhibit AS in

response to temperature changes

Since there have been studies that have linked some genes to alternatively spliced vari-

ants in response to heat stress, we came up with a list of six experimentally validated AS

genes based on a search of the literature. AT1G01060 encodes LHY, a transcription factor

involved in regulation of circadian rhythm. An A3SS event, encoding a 3-nt difference, has

been found to occur as the ambient temperature changes (37). This alternative splicing

event has been confirmed by high resolution RT-PCR (37). AT1G16610 encodes SR45, a

member of SR proteins. AT1G16610 has two splice variants which differ by a 21-nt sequence

which is present in SR45.1 but absent in SR45.2 (38). It has been found that the relative
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abundance of SR45.2 is increased as temperature goes up (38). Another two SR proteins,

SR1/SR34 (AT1G02840) and SR30 (AT1G09140), have been reported to be alternatively

spliced in response to heat stress (39; 40; 6; 41). In both cases, relevant transcripts differ by

several hundred nts (337 nts in SR30 and 352 nts in SR1/SR34). All of the above AS events

are A3SS. AT1G77080 encodes FLM, a MANS domain protein which regulates flowering.

A mutually exclusive exon event has been found in this gene which is subject to tempera-

ture changes (42). The P5CS1 gene (AT2G39800) contains an exon-3 skipping event that

is subject to temperature variation (43). The SR45a gene (AT1G07350) also contains an

alternatively spliced internal exon and the proportion of exon-skipped transcript increases

when exposure to heat stress. We illustrate the SR45a gene model and junction read align-

ments in different conditions using the Integrated Genome Browser (44) (Figure 7). Similar

illustrations of the read pileups for the rest of genes are given in the Additional file 1.

At the cutoff FDR = 0.05, MATS identified all seven genes and successfully located the

actual genomic regions. DEXseq found two of them (SR1/SR34 and SR30) and Cufflinks

reported one (FLM). None of the other methods were able to find these genes. For LHY

and SR45, the A3SS events encompass a range of nt differences from a few to tens. MATS’s

success in finding these events can probably be attributed to the exclusive use of junction

reads. The small differences were easily overlooked by other methods that take into account

of reads on full exonic regions. The junction reads that uniquely supported the A3SS

events tend to be overwhelmed by the non-junction reads along the long exon (see the

visualized read alignments in Additional file 1). DEXseq detect SR1/SR34 and SR30, with

the differences in the A3SS events are several hundreds nt long. In DEXSeq, the junction

reads are used as exon body reads.

PCR validation of the real data set

In a separate study, we used semi-quantitative PCR to characterize heat induced splicing

changes in seven genes that were annotated in TAIR 10 as being alternatively spliced.
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These seven genes thus provided a useful positive control for estimating the accuracy of the

splicing analysis methods described here. These seven genes are AT1G77180, AT1G01490,

AT2G02390, AT2G26670, AT3G19720, AT5G26780, AT1G09140. At the cutoff FDR =

0.05, MATS reported five genes, followed by Cufflinks and DEXSeq, both of which picked

out four genes. DSGseq, DiffSplice and rDiff identified one gene. The details about which

methods picked out which genes and which AS events are contained in the seven genes are

provided in table 4.

Conclusions

In this paper, we have evaluated and compared eight methods for alternative/differen-

tial splicing analysis of RNA-seq data. The major observations for the AS methods are

summarized in Table 5. These methods are classified into count-based models and iso-

form resolution models. Count-based models transform the question of AS analysis into

the question of alternative usage of counting units while isoform resolution models seek to

resolve the isoform relative abundances and in further compare the difference across condi-

tions. Only Cufflinks and DiffSplice in our comparison belong to isoform resolution models.

We’ve conducted both simulation studies and studies using real data to evaluate the meth-

ods. We created a customized simulation pipeline based on Flux Simulator. This pipeline

allows users to repeat the simulation with different alternative splicing ratios, read depths

and sample sizes.

From the perspective of AUC statistics, DEXSeq and DSGseq performed well in the

simulation studies when the annotation is accurate and complete. DEXSeq was slightly

better when two groups of samples were simulated using different dispersion parameters

while DSGseq excelled when the same dispersion parameter is used. DSGseq is also more

robust to changes in the AS ratio than DEXSeq. The drawback of DSGseq is that it

does not calculate p-value. Both methods belongs to count based models. However, like

other methods which depend on gene models, they performance was largely impaired when
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incomplete annotation was used. This may impose problems when working on non-model

species or simply any species that are not well annotated. Cufflinks and DiffSplice are

capable of assembling reads into transcripts and are thereby able to detect novel AS events.

Only Cufflinks can take advantage of established gene models and is not fully dependent on

the prior knowledge. These attributes render Cufflinks the best combination of accuracy

and robustness against incomplete annotation. Therefore it is recommended for non-model

species. On the other hand, Cufflinks achieves a better tradeoff between precision and recall.

It also performs the best in an median read coverage of 60. The change of AS ratio affected

methods’ discrimination power as well as the ability to control FDR. The rankings, however,

were relatively stable as AS ratio changed, indicating that most methods is generally good

enough to analyze real RNA-seq experiments where the splicing ratio might vary from gene

to gene.

MATS uses a Bayesian framework to calculate the probability of a gene being alter-

natively spliced. Although MATS did not exhibit good performance under the evaluation

of ROC curves and AUC, it was the best method under our comparison with respect to

controlling the FDR at a proposed level. MATS excels in the precision of its results, which

is very important for most biologists. The reason MATS had low recall and AUC is that

MATS was only designed for detecting simple AS events. Therefore it was not satisfactory

when the simulation included complex AS events. When only genes with simple AS events

were involved, both recall and AUC improved dramatically for MATS. The superb perfor-

mance of MATS in real data is boosted by the fact that all the 6 validated AS genes from the

literature as well as for the 7 PCR validated AS genes are simple AS genes. rDiff-parametric

also had a low FDR, however, but it appears to be due to its use of BF correction. In the

analysis of heat shock RNA-seq data, MATS turned out to be the method that was the

most consistent with the established experimental evidence as well as our PCR validations.

The drawback of the MATS is that it is highly dependent on the goodness of annotation

but it would be recommended for validating known AS events.
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Large sample size (8 samples per condition) did not affect the discriminating power

under ROC and/or AUC evaluation, but did improve several methods’ recall at the cost

of decrease in precision. The several methods include Cufflinks, DEXSeq, SplicingCompass

and especially SeqGSEA. SeqGSEA uses a permutation based approach to calculate p-values

for genes being alternative spliced. It is likely that the p-values are scaled in accordance

with sample size and we may expect a optimal sample size around 5 or 6 for using SeqGSEA.

The sets of significantly alternatively spliced genes at given FDR threshold (FDR = 0.05)

varied considerably between methods for the analysis of heat shock data. SeqGSEA and

DSGseq had the highest correlations of the gene ranking scores due to using the same test

statistics.

Methods

Parameter choices of software

All of the selected methods in this paper allow users to specify certain parameters. We

have mostly used the default parameters as this is how most users apply these software

packages. The detailed command lines and parameter choices used in the baseline simu-

lation study are given in the Additional file 1. The version of each program used for the

evaluations in the main paper is also given. For those that are implemented in R, including

DEXSeq, SeqGSEA and SplicingCompass, it contains sample R code to run the analysis.

For more detailed information, e.g., the meaning of the parameters and/or the whole list of

parameters, we refer to the original publications.

For MATS, we used the mapping results instead of fastq files as the program input.

Starting with MATS (3.0+), the program outputs two types of results: analysis based on

both exon body reads as well as junctions reads and analysis based on junction reads alone.

For all the comparisons, we used the latter but we showed in the Additional file 1 that

there are only negligible differences in these two results. For Cufflinks, we first assembled
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each sample individually using Cufflinks and then merged the resultant transcripts with

annotation using Cuffmerge. The merged transcripts was used in Cuffdiff to perform the

analysis of differential splicing. We used the fragment bias correction option in Cufflinks.

In the analysis of heat shock data, the minimum number of replicates were set to 2 because

one of the conditions has only two samples.

SeqGSEA integrates analysis regarding differential gene expression (DE) with analysis

regarding differential splicing (DS). We only performed the latter and calculated the DS

permutation p-values for 1000 iterations.

Heat shock data sets

In the heat shock experiment (36), RNA was harvested from two experimental condi-

tions (heat vs control) at two time points (T1 and T2). Previously grown in the same

normal conditions, 3-week-old Arabidopsis plants were divided into 2 groups. In the heat

shock group, plants were put into an incubator with temperature set to 38 ◦C during a 3

h treatment. The first set of plants were collected immediately after the 3 h treatment

and the second set of plants were harvested 24 h after the treatment. The first time point

was designated as heat shock period and the second time point was designated as recovery

period. In the control groups, the incubator was set to 22 ◦C during the 3 h heat treatment

and two sets of plants were collected from that incubator at T1 and T2 respectively. The

RNA-Seq alignments used in this study are available for visualization in the Integrated

Genome Browser via the IGB Quickload site http://www.igbquickload.org/abiotic. IGB is

freely available from http://www.bioviz.org.

Simulated RNA-seq data sets

We generated Arabidopsis RNAseq data using Flux Simulator (45) with exact ground

truth expression levels. Arabidopsis is chosen because of its relatively small genome size and

detailed genomic annotation. Two real data sets, Heat shock T1 and Heat shock T2, each
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with three replicates were used for generating simulated data. There was a good agreement

between the simulated data by NB distributions and real data (Additional file 1: Figure

S2).

We created a custom simulation pipeline (see Additional file 1) to create synthetic Ara-

bidopsis RNA-seq data simulating different conditions. Flux Simulator is a single sample

generator which carries out in-silico RNA-seq experiments. It starts with a random tran-

script population and then carries out library construction processes. Finally, it simulates

the sequencing process including size selections, and platform-specific base calling errors.

Our simulation pipeline extends the Flux Simulator capabilities to simulating differential

splicing on two conditions with biological replicates. The simulation is a two-step workflow

(Additional file 1: Figure S1). 1) First, we set empirical total transcript copy numbers for

each gene and each sample based on real data and randomly choose genes for differential

splicing across the conditions. The number of simulated replicates can be specified by the

user. 2) Second, the transcript-level abundances are calculated based on the previous total

transcript copy numbers, relative isoform proportions, and sequencing depth. Then, Flux

Simulator can generate in-silico RNA-seq reads based on transcript-level abundances.

The custom simulation pipeline generated 100bp paired-end reads in fastq format. The

relatively long read length(100bp) was deliberately chosen to produce more reads that cross

exon-exon junctions. The generated synthetic reads were then mapped against the latest

Arabidopsis genome TAIR 10 using the GMAP and GSNAP packages (version 2013-05-

09) (46). To maximize GSNAP’s ability to find spliced alignments, we used the RIKEN

Arabidopsis full length cDNA sequences (47). These sequences were utilized by GMAP

with an option “-f”that looked for all possible splice sites and reported them to GSNAP as

a database of known splice sites. The alignment results were output in SAM/BAM format

which can be used for the subsequent alternative splicing analysis.
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Isoform 1

Isoform 2

Count based model Isoform resolution model

a fragment 
probabilities of 
selecting f from each 
of the transcripts

Figure 2.1 Quantification schema. A simplified gene model consists of two expressed iso-

forms (Top). Exons are colored according to the isoform of origin. Two model

types used for quantification purpose (Bottom). In the count-based models

(left), reads are assigned to counting units (shown by dash lines) without am-

biguity. For each counting unit the model can be viewed as a test on two

possible outcomes (spliced in or spliced out). The isoform resolution model is

shown on the right where two ends of a read pair (show as dark solid boxes

connected by curly dash line) align upstream and downstream of an alternative

donor site. li1(f) is the length of alignment of fragment f to isoform i1, and is

shorter than li2(f). Therefore if the fragment size distribution is known, it is

possible to infer which isoform is more likely to generate f . Note that transcript

effective length, i.e. li1(f) , li2(f) and other parameters (depends on model you

use) might also affect the probability of assigning reads to isoforms. Usually a

maximum likelihood based approach is used to optimize this probability.
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Evaluation of the software results

We defined ranking scores for each method directly from the output. This score is a

direct reflection of significance or evidence for alternative splicing across two conditions.

For the six methods that provide adjusted p-values after multiple testing correction, we

defined the score as 1−Padj . Rdiff use Bonferroni correction while SplicingCompass, MATS,

DEXSeq, SeqGSEA and Cufflinks-Cuffdiff use Benjamini-Hochberg correction. DiffSplice

and DSGseq do not provide p-values, and so we used their test statistics as the ranking

scores: square root of JSD for DiffSplice and NB statistics for DSGseq (see the method

overview in Background).

Figure 2.2 ROC curves evaluation for three levels of AS ratio when two groups of samples

have the different dispersion pattern. ROC curves for eight selected methods

in simulation studies HighDiff
100x (left panel), MediumDiff

100x (middle panel), LowDiff
100x

(right panel). These ROC curves are obtained at a simple size of 3 for each

condition. When the level or degree of DS across conditions become smaller

(panel left-right), the power of discrimination of true-DS and non-DS drops sig-

nificantly. However the relative ranking of each methods tend to be unchanged.

DEXSeq perform consistently the best with respect to all three simulation stud-

ies.
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Figure 2.3 ROC curves evaluation for accurate and incomplete annotation. ROC curves

for eight selected methods using simulation study HighDiff
100x with complete anno-

tation (left panel) and incomplete annotation (right panel). Isoform resolution

model methods, such as Cufflinks, are more robust to incomplete annotation

compared with count-based models methods.

Figure 2.4 ROC curves evaluations for three splicing classes. ROC curves of eight selected

methods based on 1755 genes containing single splicing event from simulation

study HighDiff
100x. These 1755 genes were further divided into three splicing event

classes: 803 genes with alt. donor/acceptor sites (left panel), 850 genes with

intron retention (middle panel), 102 genes with exon skipping (right panel).
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Figure 2.5 Venn digram of heat shock data set. Overlap among the set of DS genes

found by 5 methods. SplicingCompass is not included because it almost shares

nothing with other methods based on table 3.
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Figure 2.6 Heat Map for correlation of the gene ranking scores obtained by the different

methods for heat shock data set. The correlations are generally low for any

two methods, indicating the methods are very different. Two methods both

using NB statistics (DSGseq and SeqGSEA) achieve the highest Spearman

rank correlation of 0.52.
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Figure 2.7 SR45a. Heat-induced differential splicing of Arabidopsis gene SR45a

(AT1G07350) encoding an RNA-binding protein involved in splicing. Tracks

labeled Hot and Cool contain exon-exon junction features inferred from spliced

read alignments from heat-treated (hot) and control samples (cool). Junc-

tions with fewer than five supporting reads are not shown. Two annotated

gene models for SR45a are shown in the track labeled TAIR 10 mRNA. Taller

blocks indicate translated regions of the gene model. Note that inclusion of

an internal exon introduces a premature stop codon that interrupts translation

and the exon-skipped form likely encodes the full-length protein. The gene is

on the minus strand of chr1 and so transcription proceeds from right to left.
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Table 2.1 Area under the ROC curve (AUC) and relative ranking measured under all simulation studies. Larger values of AUC indicate

better performance.

Cufflinks DEXSeq MATS SpComp DSGseq rDiff-param DiffSplice SeqGSEA

HighDiff

100x 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262(8) 0.7699(4)

MediumDiff

100x 0.7334(3) 0.7583(1) 0.5960(6) 0.5612(7) 0.7472(2) 0.6421(5) 0.5276(8) 0.7055(4)

LowDiff

100x 0.6369(1) 0.5847(4) 0.5583(6) 0.518(7) 0.6288(2) 0.5807(5) 0.4982(8) 0.6155(3)

HighSame

100x 0.7751(4) 0.8351(2) 0.6046(6) 0.5998(7) 0.8373(1) 0.6871(5) 0.5371(8) 0.7797(3)

MediumSame

100x 0.7357(4) 0.7407(2) 0.5914(6) 0.5582(7) 0.7669(1) 0.6201(5) 0.5341(8) 0.7374(3)

LowSame

100x 0.6487(2) 0.5546(5) 0.5506(6) 0.5159(7) 0.6496(1) 0.5773(4) 0.5049(8) 0.6297(3)

100xDiff
High 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262(8) 0.7699(4)

60xDiff
High 0.8687(1) 0.7667(2) 0.5861(6) 0.5688(7) 0.7648(3) 0.6848(5) 0.5266(8) 0.7338(4)

25xDiff
High 0.6807(4) 0.7432(1) 0.5607(6) 0.5479(7) 0.6967(2) 0.6659(5) 0.5001(8) 0.6815(3)

Complete annot. 0.7765(3) 0.8435(1) 0.6066(7) 0.603(6) 0.8214(2) 0.704(5) 0.5262 (8) 0.7699 (4)

Incomplete an-

not.

0.7271(1) 0.5939(5) 0.5012(8) 0.5930(6) 0.7033(2) 0.6561(3) 0.5262 (7) 0.6425 (4)

A3A5SS 0.8990(1) 0.8574(3) 0.8948(2) 0.5283(7) 0.6272(5) 0.5732(6) 0.4811(8) 0.6932(4)

IR 0.8810(4) 0.9368(1) 0.9360(2) 0.5639(8) 0.8990(3) 0.6696(6) 0.6391(7) 0.7940(5)

SE 0.8795(3) 0.9407(1) 0.9177(2) 0.7500(6) 0.8301(5) 0.5916(7) 0(8) 0.8334(4)

8samples 0.7408(5) 0.8495(1) 0.6078(7) 0.7450(4) 0.8301(2) 0.7196(6) 0.5030(8) 0.7656(3)

The table contains the AUC and relative ranking for the methods under all simulation study. The ranking position is shown in the

parenthesis. A3A5SS stands for the joint class of alternative 3’ splice site event and alternative 5’ splice site event. IR stands for

intron retention event and SE stands for skipping exon event.
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Table 2.2 Recall and precision at Padj = 0.05 measured under all simulation studies. Recalls were shown as the numbers in the left

column, precisions in the right column. Larger values of both metrics are better. Under a sample size of 3, SeqGSEA found

no genes at Padj = 0.05 and therefore no values were reported.

Cufflinks DEXSeq MATS SpComp rDiff-param DiffSplice SeqGSEA

Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.

HighDiff

100x 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

MediumDiff

100x 0.40 0.91 0.31 0.71 0.22 0.98 0.08 0.90 0.02 0.95 0.24 0.76 - -

LowDiff

100x 0.03 0.77 0.06 0.59 0.1 0.99 0.02 0.82 0.002 0.833 0.20 0.66 - -

HighSame

100x 0.58 0.90 0.49 0.71 0.27 0.98 0.13 0.94 0.05 1.0 0.26 0.84 - -

MediumSame

100x 0.42 0.91 0.25 0.80 0.21 0.99 0.07 0.92 0.01 1.0 0.25 0.81 - -

LowSame

100x 0.15 0.91 0.04 0.96 0.08 0.99 0.02 0.84 0.001 1.0 0.21 0.68 - -

100xDiff
High 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

60xDiff
High 0.49 0.91 0.29 0.72 0.22 0.99 0.09 0.93 0.02 1.0 0.25 0.81 - -

25xDiff
High 0.39 0.92 0.22 0.75 0.15 0.98 0.06 0.93 0.008 0.94 0.17 0.79 - -

A3A5SS 0.73 0.95 0.71 0.71 0.85 1 0.04 0.875 0.01 1 0.07 0.85 - -

IR 0.69 0.95 0.43 0.8 0.76 0.99 0.09 0.8 0.09 1 0.36 0.82 - -

SE 0.67 1 0.71 0.91 0.85 1 0.38 1 0.04 1 0 0 - -

Complete annot. 0.57 0.91 0.53 0.65 0.28 0.98 0.14 0.95 0.06 0.99 0.24 0.79 - -

Incomplete an-

not.

0.42 0.92 0.14 0.41 0.08 0.97 0.12 0.93 0.008 0.94 0.24 0.79 - -

8samples 0.65 0.81 0.66 0.55 0.3 0.93 0.50 0.82 0.06 0.99 0.17 0.72 0.95 0.58

A3A5SS stands for the joint class of alternative 3’ splice site event and alternative 5’ splice site event. IR stands for intron retention

event and SE stands for skipping exon event.
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Table 2.3 The number of shared differentially spliced genes detected by the selected methods for the HeatT1 data

set.

DiffSplice Cuffdiff DEXSeq MATS rDiff-param SplicingCompass

DiffSplice 48 12 7 6 2 0

Cuffdiff 306 27 48 14 1

DEXSeq 155 27 37 3

MATS 241 16 0

rDiff-param 93 0

SplicingCompass 31

The table contains the number of significant differential spliced genes that reported by each methods (number on

the diagonal) and numbers that are shared with another method

Table 2.4 The evaluation of the methods on the seven PCR validated genes.

Gene Found by which methods AS events

AT1G77180 DEXSeq, DSGseq, MATS alt acceptor in 5 UTR

AT1G01490 None retained intron in 5 UTR

AT2G02390 Cufflinks, DEXSeq, DiffSplice, MATS 4th exon alt acceptor

AT2G26670 Cufflinks, MATS 1st exon alt donor in coding region

AT3G19720 Cufflinks, MATS intron retention 3rd to last exon

AT5G26780 Cufflinks, DEXSeq intron retention last exon 3 UTR

AT1G09140 DEXSeq, MATS, rDiff-param next to last exon alt acceptor
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Table 2.5 Summary of the main observation for selected methods

Class Novel AS Det.

Re-

gion

Comments

DiffSplice IR Any type ASM Assembles transcriptome based on graph theory. Does not rely

on annotation but does not use annotation either. The good-

ness of ASM is questionable. Generally low AUC. Performs

poorly when detecting SE events.

Cufflinks IR Any type Gene Assembled transcripts merge with annotation to provide a

more confident reference. Is least affected by incomplete anno-

tation. Model is designed for pair-end data. Performs better

for medium read depth than both low and high read depth.

Performs better when detecting A3SS and A5SS events than

other types of AS events. Computationally slow, but allows

parallelization.

DEXSeq CB Only SE Exon Uses a generalized linear NB model. Achieves the highest

AUC in many cases using accurate annotation. However, in-

complete annotation can impose considerable problems for it.

Poor FDR control.

MATS CB NS AS

event

Uses a Bayesian model. Solely based on junction reads. Can-

not detect complex AS events. Annotates splicing events with

corresponding event types. Good FDR control in many simu-

lation studies. Performs the best for real data.

rDiff-param CB NS Gene Conservative with default settings. Good FDR control but

low AUC in many cases. Computationally fast.

SplicingCompass CB Only SE Gene Compares geometry angles of read count vectors. Generally

poor FDR control and Medium AUC. Performs well when de-

tecting SE events.

DSGseq CB Only SE Gene No p-value reported. Generally medium AUC. Performs well

when detecting IR events and when using incomplete annota-

tion. Computationally fast.

SeqGSEA CB Only SE Gene Integrates DE analysis with DS analysis. Generally high AUC.

Requires a sample size around 5 to claim significance at a

reasonable FDR level, i.e. FDR = 0.05. Computation time

increases dramatically as permutation times increases.

IR: Isoform resolution models

CB: Count based models

NS: Not Supported

ASM: Alternative Spliced Module
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Appendix

Step 1: Simulating biological replicates

In order to approximate the situation in real RNA-seq experiment, we required two

groups of empirical RNA-seq samples representing control and treatment groups respec-

tively. First, the pipeline selected a random subset of genes that had more than one tran-

script based on annotation and that were expressed (have non-zero read counts in every

replicate) in both input groups as true AS genes. The total transcripts copy number on a

simulated gene was proportional to the number of reads counted on the real gene. We also

introduced biological variance to gene expression by using Negative Binomial(NB) distri-

butions. NB distribution is widely used for modeling variance across biological replicates.

For each gene g we calculated mean µg and variance σ2
g of gene-level read counts across

replicates and then performed a Loess regression f on the set of points (µg, σ
2
g). Thus we

can borrow information across genes and do not rely on having large enough number of

replicates to estimate variance. In the simulation studies with the same dispersion pattern

we forced the regression function f to be the same under two conditions. For the simulation

studies using different dispersion patterns the regression function f was learned from each

of the two input groups and thus it differed for the two simulated conditions. The advantage

of using Loess function is that Loess fitting does not make the same assumption of global

homoscedasticity as general linear regression. Finally, the transcript counts for gene g were

generated by NB distribution parameterized by mean µg and fitted variance f(µg).

Step 2: Simulating differential splicing

We defined a parameter, PALT , to control the relative transcript abundances across

conditions. PALT stands for Percentage of ALTernative form, ranging from 0 to 1. The
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relative transcript abundances of a multi-isoform gene g which has i isoforms, denoted by

eg = (e1
g, ..., e

i
g), were decided through the following formulas.

• if g is a AS gene, then we set ejg = PALT, ifj = i and ejg = 1−PALT
i−1 , ifj 6= i.

• if g is not a AS gene, then we draw the relative abundance from a standard uniform

distribution ejg ∈ uniform(0, 1) with a constraint
∑i

j=1 e
j
g = 1

In addition, we introduced another parameter Read Depth(RD) to allow user to control the

mean per-based read depth which is defined as: L ∗N/T Where L is the read length; N is

the number of reads mapped to transcriptome; T is the transcriptome size.

Therefore the final absolute transcript abundance in the custom transcriptome expres-

sion profile are the product of gene-level transcript counts from step 1, relative transcript

abundances and read depth tuner which makes sure the desired read depth is generated.

Finally, the program, Flux Simulator calls this profile to generate RNA-seq reads.

Sanity check of synthetic data

To simulate biological replicates, we used Arabidopsis heat shock dataset (36) which

contains three replicates for each of the two time points. The first time point was immediate

after heat stress. The second was 24 h after recovery from the heat stress. The mean

fragment counts across replicates and mean-variance relationship used in the simulation

were estimated from the heat shock data set. Figure S2 shows the mean and variance of

fragment counts in the log scale for synthetic data in baseline simulation study RD100HD and

heat shock data. There was a good agreement which indicated that the negative binomial

model used in the simulation captured the mean-variance relationship or dispersion well. We

further compared the distribution of the mean fragment counts in log scale. The simulation

again captured the distribution in real data well.
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Figure 2.8 A two-step simulation pipeline. SAM files from real data are used as input

for this pipeline. In the first step biological replicates are simulated by using

Negative Binomial (NB) models. The raw fragment counts mean µg and vari-

ance σ2
g are calculated from the input. A regression function f is fitted on the

set of points (µg, σ
2
g). Then the fitted variances are used as parameters in the

NB models to generate three replicates, e.g. a, b, c. In the second step. The

updated gene-level fragment counts are separate onto transcript levels based

on the relative abundances and desired read depth. Finally, Flux Simulator is

used to generated simulated RNA-seq reads.
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Figure 2.9 Comparison between real (left panels) and synthetic data (right panels). The

2 panels on top are scatter plots of mean-variance relationship across repli-

cates. The blue lines are LOWESS regression lines. The orange lines are

variance = mean lines. It is clear that the real data is overdispersed with

respect to what we would expect from a Poisson distribution and that it was

well captured by a negative binomial distribution using in the simulated data.

The two panels at the bottom compare the fragment counts distribution.



www.manaraa.com

57

Command lines and parameter choices

Cufflinks

Cufflinks was written in Python and C++. It can be downloaded from http://cufflinks.

cbcb.umd.edu/. We used the version 2.1.1 in this study. A newer version 2.2.0 was release

while we were writing the paper.

c u f f l i n k s −p 8 −o RD100 . c o n t r o l r 1 −L RD100C1 RD100 . c o n t r o l r 1 . sam

c u f f l i n k s −p 8 −o RD100 . c o n t r o l r 2 −L RD100C2 RD100 . c o n t r o l r 2 . sam

c u f f l i n k s −p 8 −o RD100 . c o n t r o l r 3 −L RD100C3 RD100 . c o n t r o l r 3 . sam

c u f f l i n k s −p 8 −o RD100 . high . d i f f r 1 −L RD100HDM1 RD100 . high . d i f f r 1 . sam

c u f f l i n k s −p 8 −o RD100 . high . d i f f r 2 −L RD100HDM2 RD100 . high . d i f f r 2 . sam

c u f f l i n k s −p 8 −o RD100 . high . d i f f r 3 −L RD100HDM3 RD100 . high . d i f f r 3 . sam

cuf fmerge −g TAIR10 GFF3 genes . g f f −s TAIR10 nucleus . f a s −p 8 as s emb l i e s . txt

c u f f d i f f −o d i f f o u t −b TAIR10 nucleus . f a s −L treatment , c on t r o l −p 8 −u

merged asm/merged . g t f RD100 . high . d i f f r 1 . sam , RD100 . high . d i f f r 2 . sam , RD100 . high . d i f f r 3 . sam

RD100 . c o n t r o l r 1 . sam , RD100 . c o n t r o l r 2 . sam , RD100 . c o n t r o l r 3 . sam

DEXSeq

DEXSeq is a R package available in Bioconductor. We used the latest version 1.8.0 in

this study.

l i b r a r y (”DEXSeq”)

inDir=”countTables ”

i n f i l e=c (”RD100 . high . d i f f r 1 . count ” ,”RD100 . high . d i f f r 2 . count ” ,”RD100 . high . d i f f r 3 . count ” ,

”RD100 . c o n t r o l r 1 . count ” ,”RD100 . c o n t r o l r 2 . count ” ,”RD100 . c o n t r o l r 3 . count ”)

setwd (” countTables ”)

a n n o t a t i o n f i l e=f i l e . path (” TAIR10 GFF3 genes countingBin . g t f ”)

samples = data . frame (

cond i t i on = c ( rep (” t r ea t ed ” , 3) , rep (” untreated ” , 3 ) ) ,

r e p l i c a t e = c ( 1 : 3 , 1 : 3 ) ,

row . names = c (” g2 1 ” ,” g2 2 ” ,” g2 3 ” ,” g1 1 ” ,” g1 2 ” ,” g1 3 ”) ,

s t r ing sAsFac to r s = TRUE,

check . names = FALSE

)

samp l e s $ r ep l i c a t e=f a c t o r ( s amp l e s $ r ep l i c a t e )

ec s = read . HTSeqCounts ( c o u n t f i l e s = f i l e . path ( inDir , i n f i l e ) , des ign = samples ,

f l a t t e n e d f i l e = a n n o t a t i o n f i l e )

ec s <− e s t imateS i z eFac to r s ( ec s )

ec s <− e s t imateD i spe r s i on s ( ec s )

ec s <− f i tD i sp e r s i onFunc t i on ( ec s )

http://cufflinks.cbcb.umd.edu/
http://cufflinks.cbcb.umd.edu/
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ecs <− testForDEU ( ecs )

r e s1 <− DEUresultTable ( ec s )

sigExon=subset ( res1 , res1$padjust <0.05)

DiffSplice

DiffSplice was written in C++. It can be downloaded from http://www.netlab.uky.

edu/p/bioinfo/DiffSplice/. We used the latest version 0.1.1 in this study.

d i f f s p l i c e s e t t i n g s . c f g d a t a f i l e . c f g output

## parameters used in s e t t i n g s . c f g

t h r e s h j u n c t i o n f i l t e r m a x r e a d s u p p o r t 2

t h r e s h j u n c t i o n f i l t e r m e a n r e a d s u p p o r t 0

t h r e s h j u n c t i o n f i l t e r n u m s a m p l e s p r e s e n c e 0

i g n o r e m i n o r a l t e r n a t i v e s p l i c i n g v a r i a n t s yes

th r e sh ave rage r ead cove rage exon 0

t h r e s h a v e r a g e r e a d c o v e r a g e i n t r o n 0

b a l a n c e d d e s i g n f o r p e r m u t a t i o n t e s t no

f a l s e d i s c o v e r y r a t e 0 .05

th r e sh fo ldchange up 0 .5

thresh fo ldchange down 0 .5

thresh sqrtJSD 0 .1

DSGseq

DSGseq consists of a set of R scripts but is not a standard R packages. It can be down-

loaded from http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/. We used the lat-

est version 0.1.0.

bamToBed − i RD100 . high . d i f f r 1 . bam > RD100 . high . d i f f r 1 . bed

bamToBed − i RD100 . high . d i f f r 2 . bam > RD100 . high . d i f f r 2 . bed

bamToBed − i RD100 . high . d i f f r 3 . bam > RD100 . high . d i f f r 3 . bed

bamToBed − i RD100 . c o n t r o l r 1 . bam > RD100 . c o n t r o l r 1 . bed

bamToBed − i RD100 . c o n t r o l r 2 . bam > RD100 . c o n t r o l r 2 . bed

http://www.netlab.uky.edu/p/bioinfo/DiffSplice/
http://www.netlab.uky.edu/p/bioinfo/DiffSplice/
http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/


www.manaraa.com

59

bamToBed − i RD100 . c o n t r o l r 3 . bam > RD100 . c o n t r o l r 3 . bed

SeqExpress count RD100 . high . d i f f r 1 . bed TAIR10 . merge . r e f F l a t RD100 . high . d i f f r 1 . count

SeqExpress count RD100 . high . d i f f r 2 . bed TAIR10 . merge . r e f F l a t RD100 . high . d i f f r 2 . count

SeqExpress count RD100 . high . d i f f r 3 . bed TAIR10 . merge . r e f F l a t RD100 . high . d i f f r 3 . count

SeqExpress count RD100 . c o n t r o l r 1 . bed TAIR10 . merge . r e f F l a t RD100 . c o n t r o l r 1 . count

SeqExpress count RD100 . c o n t r o l r 2 . bed TAIR10 . merge . r e f F l a t RD100 . c o n t r o l r 2 . count

SeqExpress count RD100 . c o n t r o l r 3 . bed TAIR10 . merge . r e f F l a t RD100 . c o n t r o l r 3 . count

Rscr ipt DSGNB.R 3 RD100 . high . d i f f r 1 . count RD100 . high . d i f f r 2 . count RD100 . high . d i f f r 3 . count 3

RD100 . c o n t r o l r 1 . count RD100 . c o n t r o l r 2 . count RD100 . c o n t r o l r 3 . count RD100 high di f f . DSGresult

MATS

MATS was written Python. It can be downloaded from http://rnaseq-mats.sourceforge.

net/. We used the latest version 3.0.8 in this study.

python RNASeq−MATS. py −b1 RD100 . high . d i f f r 1 . bam, RD100 . high . d i f f r 2 . bam, RD100 . high . d i f f r 3 . bam −b2

RD100 . c o n t r o l r 1 . bam, RD100 . c o n t r o l r 2 . bam, RD100 . c o n t r o l r 3 . bam −g t f TAIR10 GFF3 genes . g t f −t pa i red

−l en 100 −o MATS OUT

SeqGSEA

SeqGSEA is a R package available in Bioconductor. We used the version 1.2.1. A newer

version 1.5.0 was release while we were writing the paper.

l i b r a r y (SeqGSEA)

rm( l i s t=l s ( ) )

case . pattern <− ”ˆRD100 . high ”

c t r l . pattern <− ”ˆRD100 . c on t r o l ”

case . f i l e s <− d i r (”RD100 . high .dm/ seqgsea ” , pattern=case . pattern , f u l l . names = TRUE)

con t r o l . f i l e s <− d i r (”RD100 . c on t r o l / seqgsea ” , pattern=c t r l . pattern , f u l l . names = TRUE)

output . p r e f i x <− ”SeqGSEA . r e s u l t ”

l i b r a r y ( doPa ra l l e l )

c l <− makeCluster (2 )

r e g i s t e r D o P a r a l l e l ( c l )

perm . t imes <− 1000

RCS <− loadExonCountData ( case . f i l e s , c on t r o l . f i l e s )

RCS <− exonTes tab i l i t y (RCS, c u t o f f =5)

geneTestable <− geneTe s t ab i l i t y (RCS)

RCS <− subsetByGenes (RCS, unique ( geneID (RCS) ) [ geneTestable ] )

geneIDs <− unique ( geneID (RCS) )

RCS <− estiExonNBstat (RCS)

http://rnaseq-mats.sourceforge.net/
http://rnaseq-mats.sourceforge.net/
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RCS <− estiGeneNBstat (RCS)

permuteMat <− genpermuteMat (RCS, t imes=perm . t imes )

RCS <− DSpermutePval (RCS, permuteMat )

SplicingCompass

SplicingCompass is a R package. We used the latest version 1.0.1.

l i b r a r y (” Splic ingCompass ”)

packageDescr ipt ion (” Splic ingCompass ”)

expInf=new(” ExperimentInfo ”)

expInf=s e tDe s c r i p t i on ( expInf , ” Group1 vs Group2 ”)

expInf=setGroupInfo ( expInf ,

groupName1=”ControlGroup1 ” , sampleNumsGroup1=1:3 ,

groupName2=”CaseGroup2 ” , sampleNumsGroup2=4:6)

covBedCountFilesControl=c (

”RD100 . c o n t r o l r 1 . covBed ” ,

”RD100 . c o n t r o l r 2 . covBed ” ,

”RD100 . c o n t r o l r 3 . covBed ”)

covBedCountFilesCase=c (

”RD100 . high . d i f f r 1 . covBed ” ,

”RD100 . high . d i f f r 2 . covBed ” ,

”RD100 . high . d i f f r 3 . covBed ”)

junct ionBedFi l e sCont ro l=c (

”RD100 . c o n t r o l r 1 . juncBed ” ,

”RD100 . c o n t r o l r 2 . juncBed ” ,

”RD100 . c o n t r o l r 3 . juncBed ”)

junct ionBedFi l e sCase=c (

”RD100 . high . d i f f r 1 . juncBed ” ,

”RD100 . high . d i f f r 2 . juncBed ” ,

”RD100 . high . d i f f r 3 . juncBed ”)

expInf=setCovBedCountFiles ( expInf , c ( covBedCountFilesCase , covBedCountFilesControl ) )

expInf=se tJunct i onBedFi l e s ( expInf , c ( junct ionBedFi lesCase , junct ionBedFi l e sContro l ) )

expInf=setReferenceAnnotat ion ( expInf , ” TAIR10 TableUnion . g t f ”)

re ferenceAnnotat ionFormat=l i s t ( IDFieldName=”geneSymbol ” , idValSep=” ”)

expInf=setReferenceAnnotationFormat ( expInf , re ferenceAnnotat ionFormat )

checkExperimentInfo ( expInf )

countTable=new(” CountTable ”)

countTable=setExper imentInfo ( countTable , expInf )

countTable=constructCountTable ( countTable , printDotPerGene=TRUE)

sc = new(” Splic ingCompass ”)

sc = constructSpl ic ingCompass ( sc , countTable , minOveral lJunctionReadSupport=3)

sc = initS igGenesFromResults ( sc , ad justed=TRUE, thre sho ld =0.05)

s igGenes = getS ign i f i cantGeneSymbols ( sc )

resTab = getResultTable ( sc )
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rDIff-parametric

rDiff can be downloaded from http://cbio.mskcc.org/public/raetschlab/user/

drewe/rdiff/. We used the latest version 0.3.

r d i f f −o RD100HighDm −d data/ −a RD100 . c o n t r o l r 1 . bam, RD100 . c o n t r o l r 2 . bam, RD100 . c o n t r o l r 3 . bam

−b RD100 . high . d i f f r 1 . bam, RD100 . high . d i f f r 2 . bam, RD100 . high . d i f f r 3 . bam

−g data/TAIR10 GFF3 genes . g f f −m param −L 100

http://cbio.mskcc.org/public/raetschlab/user/drewe/rdiff/
http://cbio.mskcc.org/public/raetschlab/user/drewe/rdiff/
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Comparison of two different MATS results

Table 2.6 MATS result using junction reads only versus result using both junction reads and exon

body reads in simulation study RD100HD . The Pearson correlation of the p-values in

these two results is as high as 0.978.

EventType NumEvents.JC.only SigEvents.JC.only NumEvents.JC+

readsOnTarget

SigEvents.JC+

readsOnTarget

SE 704 153 704 152

MXE 14 1 14 1

A5SS 556 165 556 165

A3SS 1106 314 1106 313

RI 983 311 985 311

SE: Skipped exon

MXE: Mutually exclusive exon

A5SS: Alternative 5’ splice site

A3SS: Alternative 3’ splice site

RI: Retained intron

NumEvents.JC.only: total number of events detected using junction reads only

SigEvents.JC.only: number of significant events detected using junction reads only

NumEvents.JC+readsOnTarget: total number of events detected using both junction reads and

exon body reads

SigEvents.JC+readsOnTarget: number of significant events detected using both junction reads and

exon body reads

Computational time requirement

We ran the code shown in the previous section in Iowa State University super clus-

ter called Lightning. The code was all executed in a single node and a single core with
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16GB RAM. Although we used a cluster, this amount of computational power can be eas-

ily obtained in a standard PC. All the programs were finished within a few hours. The

computation time required for SeqGSEA is largely affected by the permutation times. In

this study, we set it to 1000. The total required CPU time for each method in the baseline

simulation study RD100HD is given in the Table S1.

Table 2.7 Total computational time in CPU-seconds

Cufflinks DEXSeq MATS SpComp DSGseq rDiff-param DiffSplice SeqGSEA

41172s 6096s 8371s 10408s 1256s 1038s 4415s 39539s

Visualization of read alignments in heat shock data for experimentally

validated AS genes

We have examined a few Arabidopsis genes that are known to be differentially spliced

in response to ambient temperature changes. The following figures are the visualization of

reads alignment of these few known genes using Integrated Genome Browser (44). Solid

bars represent reads, and thin lines indicate gaps in the alignment.

LHY

LATE ELONGATED HYPOCOTYL (LHY), circadian clock genes, are known to be

differential spliced in response to temperature changes(37). 5 transcripts have been found

(based on TAIR10) in gene AT1G01060 which belongs to LHY gene family. Transcript

AT1G01060.4 differs from other transcripts by 3-nt difference in the 3’ site.
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Figure 2.10 LHY. Visualization of read alignments in heat shock data. Reads from heat

stress group are colored in red whereas reads from control groups are colored

in blue. The black arrow indicates where the AS event happens in the gene

model.

SR45

AT1G16610 encodes SR45 which is a member of SR protein family. A alternative 3’SS

event differed by a 21-nt sequence has been found to occur as ambient temperature changes

(38).
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Figure 2.11 SR45. Visualization of read alignments in heat shock data. Reads from heat

stress group are colored in red and reads from control groups are colored in

blue. The black arrow indicates where the AS event happens in the gene

model.

SR1/SR34

AT1G02840 encodes SR1/SR34 protein, a member of highly conserved family of spliceo-

some proteins. An alternative 3’SS event has been found as ambient temperature changes(39).
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Figure 2.12 SR1/SR34. Visualization of read alignments in heat shock data. Reads from

heat stress group are colored in red and reads from control groups are colored

in blue. The black arrow indicates where the AS event happens in the gene

model.

SR30

AT1G09140 encodes SR30, a member of highly conserved family of spliceosome proteins.

An alternative 3’SS event has been found in response to heat stress (39).
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Figure 2.13 SR30. Visualization of read alignments in heat shock data. Reads from heat

stress group are colored in red and reads from control groups are colored in

blue. The black arrow indicates where the AS event happens in the gene

model.

P5CS1

P5CS1 gene (AT2G39800) contains an exon-3 skipping event which is subject to tem-

perature variation (43).
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Figure 2.14 P5CS1. Visualization of read alignments in heat shock data. Reads from

heat stress group are colored in red and reads from control groups are colored

in blue. The black arrow indicates where the AS event happens in the gene

model.

FLM

AT1G77080 encodes FLM, a protein which regulates flowering. An mutually exclusive

exon event has been found in subject to temperature changes (42)
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Figure 2.15 FLM. Visualization of read alignments in heat shock data. Reads from heat

stress group are colored in red and reads from control groups are colored in

blue. The black arrow indicates where the AS event happens in the gene

model.

Figure 2.16 ROC curves evaluation for three different AS ratios when two groups of sam-

ples have the same dispersion pattern. ROC curves for simulation studies

HighSame
100x (left panel), MediumSame

100x (middle panel), LowSame
100x (right panel). These

ROC curves are obtained at a simple size of 3 for each condition.
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Figure 2.17 ROC curves evaluation for the two different samples sizes. Left panel shows

ROC curves in the baseline simulation study HighDiff
100xRD100HD which con-

tained three replicates for each condition. The right panel shows the ROC

curves when the sample size was increased to 8.

Figure 2.18 ROC curves evaluation for three different read depths, simulation studies

100xDiff
High (left panel), 60xDiff

High (middle panel), 25xDiff
High(right panel).
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Abstract

We propose a novel method and software tool, Strawberry, for transcript reconstruc-

tion and quantification from RNA-Seq data under the guidance of genome alignment and

independent of gene annotation. Strawberry consists of two modules: assembly and quan-

tification. The novelty of Strawberry is that the two modules use different optimization

frameworks but utilize the same data graph structure, which allows a highly efficient, ex-

pandable and accurate algorithm for dealing large data. The assembly module parses aligned

reads into splicing graphs, and uses network flow algorithms to select the most likely tran-

scripts. The quantification module uses a latent class model to assign read counts from

the nodes of splicing graphs to transcripts. Strawberry simultaneously estimates the tran-

script abundances and corrects for sequencing bias through an EM algorithm. Based on

simulations, Strawberry outperforms Cufflinks and StringTie in terms of both assembly and
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quantification accuracies. Under the evaluation of a real data set, the estimated transcript

expression by Strawberry has the highest correlation with Nanostring probe counts, an

independent experiment measure for transcript expression.

Availability: Strawberry is written in C++14, and is available as open source software

at https://github.com/ruolin/strawberry under the MIT license.

Author summary

Transcript assembly and quantification are important bioinformatics applications of

RNA-Seq. The difficulty of solving these problem arises from the ambiguity of reads as-

signment to isoforms uniquely. This challenge is twofold: statistically, it requires a high-

dimensional mixture model, and computationally, it needs to process datasets that com-

monly consist of tens of millions of reads. Existing algorithms either use very complex

models that are too slow or assume no models, rather heuristic, and thus less accurate.

Strawberry seeks to achieve a great balance between the model complexity and speed.

Strawberry effectively leverages a graph-based algorithm to utilize all possible information

from pair-end reads and, to our knowledge, is the first to apply a flow network algorithm

on the constrained assembly problem. We are also the first to formulate the quantification

problem in a latent class model. All of these features not only lead to a more flexible and

complex quantification model but also yield software that is easier to maintain and extend.

In this method paper, we have shown that the Strawberry method is novel, accurate, fast

and scalable using both simulated data and real data.

Introduction

Transcript-level quantification is a key step for detecting differential alternative splicing

and differential gene expression. A number of computational methods have been devel-

oped for estimation of transcript abundances (1; 2; 3; 4; 5; 6; 7; 8; 9). However, many of

the methods (4; 5; 6; 7; 8; 9) rely on existing gene annotations and limits the use of such

https://github.com/ruolin/strawberry
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methods because even for the model organisms like Drosophila melanogaster new isoforms

are discovered all the time under different tissues and/or conditions (Pachter, 2011, Mod-

els for transcript quantification from RNA-Seq). In addition, Liu et al. has shown that

incomplete annotation is a major factor that negatively affects quantification accuracy for

detecting alternative splicing (10). Thus, transcript-level quantification should be coupled

with transcript assembly when dealing with RNA-Seq data. Pure de novo assembly of raw

RNA-Seq is very challenging. Genome-guided methods, instead, assemble aligned RNA-Seq

reads into transcripts, taking advantage of (if possible) a finished and high quality genome

assembly and the-state-of-art spliced alignment algorithms.

Two strategies have evolved for tackling transcript assembly and quantification after

RNA-Seq reads have been aligned to reference genome: simultaneous transcript construc-

tion and expression quantification vs. sequential transcript construction then expression

quantification. Clearly, transcript reconstruction and quantification are closely related and

many methods try to solve both simultaneously (3; 11; 12; 13). These methods usually

exhaustively enumerate all possible transcripts and then use regularization to get rid of

unlikely transcripts when calculating their expression. The L1 penalty is commonly used

to favor sparse transcript solutions (13). Another strategy involves breaking the problem

up in a step-by-step manner, like Cufflinks. First, reconstruct a set of transcripts, and

then performs quantification on the transcripts. The latter is a more conservative strategy

and usually leads to “maximum precision vs. maximum sensitivity” (14) compared to the

former.

Method overview

Strawberry consists of two modules: assembly module and quantification module. The

two modules work in a sequential manner (Fig1). Strawberry is a genome-guided transcript-

level assembler and quantification tool. It takes aligned RNA-Seq data in BAM format and

output a gene annotation file in gff format with estimated transcript abundances. Using
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alignment format as input allows Strawberry to take advantages of the latest reference

genome (if possible, a finished and high-quality one) and stat-of-the-art splice-awareness

aligners. Strawberry is designed for Illumina pair-end reads. To be clear in this article,

a read-pair refers to aligned paired-end reads with sequences observed at both ends and

unknown sequence in between and a read refers to either the upstream or downstream

observed sequence of a read-pair. For single-end reads, replace the terminology “read-pair”

with “read” and proceed.

The assembly module of Strawberry seeks a parsimonious representation of transcripts

which best explains the observed read-pairs with the aid of flow network algorithms. The

read-pairs are converted to splicing graphs where the nodes are subexons and edges are splice

alignments. FlipFlop (3), StringTie (2) and Traph (11) also use network flow algorithm,

but for different purposes. StringTie and Traph renounce the likelihood-based approach

and solve transcript assembly and quantification as optimization problems and solve the

two problems simultaneously in a flow network framework build upon on splice graph. The

difference is that Traph uses a min-flow algorithm to find a set of flows that minimize the

difference between the flows and the observed coverages, while StringTie uses an iterative

algorithm to harvest the heaviest path and then uses maximum flow to estimate their

expression. Here, a flow can be understood as a transcript with uniform coverage along it.

Although also using flow network, FlipFlop constructs a penalized likelihood model. The

penalized likelihood model is carefully designed to be convex and the estimation problem

can be cast into a convex-cost min-flow. Different from all of them, Strawberry uses a min-

cost circulation flow to solve a parsimonious assembly problem. If the underlying sequence

of a read-pair contains an unsequenced portion, such as the insert, this read-pair might

indicate necessary paths that are usually neglected by other methods (15), while Strawberry

explicitly converts them to graph constraints. In a nutshell, StringTie uses a flow network

to calculate transcript expression; Traph and FlipFlop use flow networks to concurrently

solve transcript identification and quantification. Strawberry is the only one that applies a
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flow network to an assembly problem. The assembly problem that Strawberry is solving is

also unique. It is a constrained assembly problem that is tailored for paired-end reads by

converting them to graph path constraints (see method section).

The quantification model of Strawberry is based on a latent class model with an effective

data collapsing mechanism, which utilizes the same graph topology used in assembly to

reduce the individual reads to subexon path counts. A subexon is a maximal portion

of covered region (covered by reads) without any splice junctions. And subexon path is

regarded a set of ordered subexons. The subexon path representation allows Strawberry

to save computational cost and model nonuniform reads distribution along transcripts.

To the best of our knowledge, the concept of subexon path was first proposed in (6).

However, it can be seen as a modification/extension of the idea of maximum collapsing

in (16). Although using same data collapsing mechanism, Rossell et al. uses a Bayesian

framework and does not have a joint estimation of transcript proportion and coverage bias

effect (6). While Strawberry applies a conditional multinomial distribution for the subexon

paths and estimates the transcript proportion and coverage effect simultaneously in the

mixture model. The change from a non-parametric model in (6) to a multinomial model in

Strawberry permits better model expandability.

Strawberry is designed to be versatile and modular. It is possible to skip the assembly

step and just run quantification module against an external set of transcripts, e.g. those

from gene annotations. In this case, Strawberry reduces any overlapping set of isoforms to

a splicing graph consisting of subexons and subexon paths. The external set of transcripts

can also be used by Strawberry to help with assembly. Finally, Strawberry reports the

calculated transcript expression in the units of FPKM (Fragments Per Kilobase of transcript

per Million mapped reads) and TPM (Transcripts Per Kilobase Million).
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Results

Ground truth simulated data and programs to compare

We compare Strawberry to two state-of-the-art programs, Cufflinks v2.2.1 (1) and

StringTie v1.3.3 (2), on three simulated data sets, RD25 RD60 and RD100. The only

difference among these three data sets is the average sequencing depth. Roughly speaking,

RD25 contains ∼ 2.5 million, RD60 ∼ 6 million and RD100 ∼ 10 million reads. These

data were generated by the procedure used in (10)—100bp paired-end reads generated from

5800 multi-isoform Arabidopsis genes on genome version TAIR10 (29) using Flux Simula-

tor (30). This simulation was repeated 10 times so that each data set consists of 10 RNA-Seq

libraries. Those simulated reads were then mapped onto the Arabidopsis TAIR10 genome

assembly using Tophat2 (31) and HISAT2 (32). Since plant genomes have shorter introns

than mammals, all the programs ran on the default parameters except for the maximum

intron length, which was set to 5000 bp.

To evaluate Strawberry’s performance on higher eukaryotes, we also compare the three

programs using simulated human RNA-seq data. To avoid possible simulation bias, we

choose a different simulator called Polyester (40). Polyester requires a count matrix, where

each row represents a transcript and each column contains the read counts for a sample, as an

input. To generate this count matrix, we downloaded 6 samples from the GEUVADIS data

base (41) and aligned them with HISAT2. Then Cufflinks was used to estimate transcript

expression. All transcripts were selected from loci which have at least two isoforms with

FPKM > 1.0 for all six samples. This human simulation is referred to as GEU (see S1

Data). Compared to RD100, GEU has relatively longer read length (150 bp paired-end)

and longer fragment length (700 bp in average). This read length and fragment size are

intended for the latest illumina sequencer NextSeq.
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Comparing assembly accuracy

We use a Cufflinks module called Cuffcompare http://cole-trapnell-lab.github.

io/cufflinks/cuffcompare/index.html to compare the assembled transcripts or trans-

frags to the reference transcripts since the reads are all simulated based on the reference

transcripts. We use Cuffcompares evaluation algorithm which implements typical gene find-

ing measures of recall and precision (39). For example, the recall of an exon is the percentage

of number of corrected exons divided by the number of actual exons and precision is the

number of correct exons divided by the number of predicted exons. Determination of tran-

scription start and end sites is a known weakness of RNA-Seq and impairs its application on

identification of transcript boundaries (34). Thus, Cuffcompare defines a correct transcript

as the chain of introns that match with the reference, leaving possible variances in the first

and last exon.

We first assessed the genome-guided assembly accuracy of the three programs using

simulated Arabidopsis data set. The degree to which transcripts reported by each method

matched the reference annotation at the nucleotide, exon, intron and transcript level for

three different sequencing depths are shown in (Fig 3.2 , S1 Fig and S2 Fig). In all

comparisons, Strawberry has higher recall as well as precision. In RD100 data, for example,

Strawberry averages 71.78%, 80.36%, 52.35% on recall at exons, intron, and full transcripts

level respectively, followed StringTie, 67.03%, 74.41%, 46.65% and then Cufflinks, 65.51%,

74.09%, 42.76%. For all the methods, the recall decreases as sequencing depth decreases

while the precision remains at a high level and doesn’t change much. This indicates that

although lower read depths make it harder for these methods to recover the true signal, the

results are still very reliable. Correct detection of full transcripts using RNA-Seq data is

still a very challenging task for all assemblers. Given sufficient sequencing depth (RD100 ),

all methods can correctly retrieve more than 65% exons, and 75% intron but only around

50% of the full transcripts. On the other hand, precision for exons and intron detection

are very high for all methods, averaging 98-99%. For transcript detection, Strawberry’s

http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/index.html
http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/index.html
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average precision is 81.62%, while StringTie is at 80.46% and Cufflinks at 74.68% . For the

methods that parsimoniously assemble reads into transcripts, this may indicate some room

for improvement—although the individual exons and introns are correctly recovered, the

ways to stitch them together are still not optimal. We further conducted a paired t-test to

evaluate the statistical significance of the difference in F1 score (the harmonic mean of recall

and precision) between Strawberry and the other tools (p value = 7.02e-12 when compared

to StringTie, and p value = 1.947e-14 when compared to Cufflinks).

Next, we evaluated the methods using GEU. Overall, we observe that the F1 values at

transcript level are roughly at the same level as in RD100, and Strawberry clearly maintains

its lead, followed by StringTie (Fig. 3.3). However, the gap between Strawberry and

StringTie is smaller compared to RD100. Again, a paired t-test of F1 scores is used, yielding

p value = 5.614e-03 when compared to StringTie, and p value = 2.965e-09. Strawberry also

achieves the best F1 score at gene level (Fig. 3.3), and Cufflinks performs better than

StringTie at gene level. When it comes to exon and intron levels comparison, however,

StringTie clearly performs better than Strawberry and Cufflinks, see S5 Fig. This suggests

Strawberry still has room to improve the detection on exon and intron level for human,

which can lead to higher transcript reconstruction rate.

Comparing quantification accuracy

Let xi be the true value of the FPKM for transcript i based on ground truth simulated

data and yi be the predicted FPKM. If log transformation is taking, these FPKM values

were incremented by 1 before log transformation to avoid infinite numbers. We adopt the

metrics defined in Patro et.al 2017 (4).

1. Proportionality correlation

ρp =
2Cov{log x, log y}

Var{log x}+ Var{log y}
(3.1)



www.manaraa.com

79

2. Spearman correlation of between the true FPKM values and predicted FPKM values.

3. Mean Absolute Relative Difference (MARD), which is computed using the absolute

relative difference ARDi for each transcript i:

ARDi =
|xi − yi|

0.5|xi + yi|
, (3.2)

MARD is the mean value of the {ARDi|i ∈ 1, ..., I}. ARD is bounded above by 2 and

below by 0 and smaller value indicates a better prediction. Patro et al. (4) computes

MARD on the number of reads deriving from each transcript which is commensurable

to FPKM values.

Again, we first evaluate the methods using simulated Arabidopsis data. Fig 3.4 , S3

Fig, S4 Fig show the histogram of the three measures over 10 replicates for all three

read depth data sets RD100, RD60 and RD25 respectively. In these simulations, It can

be seen that these methods are all well separated in terms of the all evaluation metrics

except for only one case in which StringTie and Cufflinks are virtually tied over Spearman

correlation in RD60 data (S3 Fig). In the case of RD100 data, Strawberry averaged 0.911,

0.912, and 0.370 on Proportional correlation, Spearman correlation and MARD respectively,

followed by StringTie, 0.866, 0.869, 0.385 and then Cufflinks, 0.834, 0.876, 0.450. Cufflinks

outperforms StringTie in terms of Spearman correlation but not the other two metrics.

Like the assembly results, the sequencing depth seems to have a uniform impact on the

quantification accuracy and all methods favor the highest read depth. It is worth mentioning

that our enumeration of read depths only focuses on down sampling. Overall, Strawberry

outperforms the other methods under all evaluation metrics and sequencing depth and

StringTie performs better than Cufflinks. However, the distance between the second and

third place is less than the distance between the first and second place. We also observe

that Strawberry and StringTie have less variability in results than Cufflinks did, suggesting

they are more consistent in terms of their estimates.
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When evaluated on simulated human RNA-Seq data, all three methods have lower cor-

relations and higher relative differences compared with the true FPKM values. The order of

the methods’ performances slightly changes based on different evaluation metrics (Fig. 3.5).

Strawberry has the lowest average MARD across the 6 samples compared to StringTie and

Cufflinks (Table 3.1). When the methods are compared using Spearman correlation, the

differences among the three methods are the smallest. Cufflinks performs poorly under

proportionality correlation (averaged at 0.3573). StringTie achieves the highest average

proportionality while Strawberry is the second. Fig 3.5 compares the FPKM value of

each predicted transcript against its best possible matched known transcript’s true FPKM

value. S6 Fig removes the predicted transcripts that are partially matched and only keeps

the transcripts that fully match the known transcripts, i.e., class code equal to “=” in the

Cuffcompare result. In this “match only” case, all statistics improved significantly for all

the methods, and Strawberry performs the best in every comparisons (Table 3.1).

Table 3.1 Averaged Spearman correlation, Proportional correlation, Mean Absolute Rela-

tive Difference (MARD) for the 6 samples in GEU, which is a simulated Human

data. These statistics are calculated based on the predicted FPKM values of 1)

all reconstructed transcripts 2) only transcripts that match the known, and the

true FPKM values used in the simulation.

Method Avg. Sp. Avg. Prop. Avg. MARD

All transcripts

Strawberry 0.7272 0.7430 0.4801

StringTie 0.7476 0.7759 0.5392

Cufflinks 0.7631 0.3573 0.5287

Match only

Strawberry 0.8706 0.8706 0.3144

StringTie 0.8517 0.8704 0.4068

Cufflinks 0.8614 0.6621 0.4561

Real RNA-Seq data

To demonstrate Strawberry utility on real data, we tested all three programs on the

Homo sapiens HepG2 data from Steijger et al. (34). The data was downloaded from http:

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1730/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1730/
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//www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1730/, which includes alignment

results from a library of 100 million 76bp paired-end Homo sapiens RNA-Seq reads and

a total of 140 NanoString probe counts. These 140 probes targeted 109 genes, designed

against specific transcripts. NanoString counts were then compared to the highest FPKM

value reported for transcripts consistent with the probe design (34). We followed the same

procedure used in Steijger et al. except for using the Tophat2 alignment result and Cuffcom-

pare for finding the best matching transcripts. Correlations between the log-transformed

FPKM reported by each method and NanoString count was calculated. Strawberry again is

clearly the front-runner, correlation increased by 10.3%, 5.26% compared to Cufflinks and

StringTie respectively (Table 3.2). The number of probes having matched transcripts were

very close for all three methods.

It’s worth mentioning that the numbers reported here may not be directly comparable

to the numbers in Steijger et al. because we use a different aligner. In Steijger et al.,

STAR (35) was used as the default aligner. However the STAR alignment result, as a

supplementary file in their paper, does not contain XS, which is used in the BAM format

to suggest the transcription orientation from splice site dinucleotides, such as GT-AG.

Table 3.2 Correlation of FPKMs and probe counts on real RNA-Seq data HepG2. NanoS-

tring counts were compared to the FPKM values reported for three programs.

The number of probes which have matching transcripts is reported on the last

line.

Strawberry Cufflinks StringTie

Spearman Corr. 0.640 0.580 0.608

Num. of matches 82 82 83

Fig 3.6 shows an example of a novel isoform discovered by Strawberry in the HepG2

data. At locus ENSG0000009097, Strawberry reconstructs three isoforms. Two of them

matches known isoforms ENST00000591590 and ENST00000205194 based on GRCh37 En-

semble annotation. The third isoform, transcript.14285.3, contains a novel splicing junction

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1730/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1730/
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which is supported by 7 uniquely aligned read-pairs. Strawberry predicts the new isoform

at a fraction of 0.277 in all the three predicted isoforms.

Running Time

The running time of all three program plus a simple linux word count program on RD25,

RD100, and HepG2 are plotted in Fig 3.7. For the HepG2 data, Cufflinks tooks 62.2 min,

Strawberry 12.35 min and StringTie 4.05 min. All programs were run using 8 threads on

a Dell Precision T1650, equipped with Intel Core i7-3770 CPU and 16 GB RAM. Each

program was given the aligned data in BAM format and the time spent on alignment is not

included. To see how well these programs scale when input grows in size, we ran a simple

single thread linux word count program wc (which is known to have linear complexity) on

the SAM format of the same data. Surprisingly, StringTie is even faster than wc(which

uses 8.69 min), and it demonstrates the simplicity of StringTie algorithm. Strawberry also

scales well compared to wc. Cufflinks running time shoots up when the number of RNA-

Seq reads grows to 100 million. Cufflinks and Strawberry both use the EM algorithm for

assigning ambiguous reads to transcripts. The EM algorithm is a time consuming algorithm

but the reduced data representation used in Strawberry makes it almost 5 times faster than

Cufflinks.

Discussion

Strawberry adopts a step-by-step approach for transcript assembly and quantification of

expression levels. We believe it is critical to assemble the transcriptome before carrying out

quantification since every eukaryotic RNA-Seq experiment is likely to generate unknown

transcripts even for the well-annotated species. Our previous study of alternative splicing

has shown that an incomplete genome annotation can have a huge negative impact on the

detection accuracy of alternative splicing events (10). Strawberry avoids strictly using gene

annotations for quantification and is able to assemble novel isoforms. However, with high-
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quality annotation, Strawberry can take advantage of the annotation and yield a better

assembly result. The genome guided assembly is enabled by “-g” option.

Strawberry’s transcriptome assembly takes advantage of the latest genome assembly and

state-of-art splice-awareness aligners and is usually more accurate than the de novo assem-

blers. However, this makes Strawberry reliant on alignment results. Another limitation of

current Strawberry’s assembly is the lack of detection of alternative promoter usage and

alternative polyadenylation. Unlike other alternative splicing events, de-novo detection of

alternative promoter usage and alternative polyadenylation can not be inferred from junc-

tion alignments and requires some sophisticated read depth models because of the intrinsic

noisiness around transcription start and end sites introduced by RNA-Seq.

Compared to current approaches such as FlipFlop, Strawberry’s assemble-then-quantify

procedure cannot best utilize the quantification information in the assembly step. This is be-

cause for short-read technologies, such as Illumina, the local estimates of relative abundance

are the only information available for phasing distant exons during assembly. However,

Strawberry’s flow network algorithm is able alleviate this phasing problem by converting

the exon and junction coverage into the weighs of the flows. As a result, for example, the

exons and exon-exon junctions which have similar coverages will tend to form one path by

the optimization algorithm.

Both Cufflinks and Strawberry use the EM algorithm for optimizing the likelihood func-

tions. However, because of a reduced data representation, Strawberry is 10 around times

faster than Cufflinks. StringTie uses a flow algorithm for quantification which is very fast

compared to the EM algorithm used by Strawberry and Cufflinks. This makes it unlikely

for Strawberry to outrun StringTie. Like StringTie and Cufflinks, Strawberry implements

the thread-level parallellism which can process several loci at a time to greatly speed up

the program.

The lack of gold standard data for the assessment of RNA-Seq applications is still a

major problem for the community. The comparisons used in this paper are primarily based
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on simulated data where we know the ground truth. However, the simulation programs can

fall short of resembling real data in various ways, including sequencing bias, read errors, etc.

Numerous studies have shown that bias can be caused by local sequences (e.g., hexamer

bias) around the reads (36), position of the reads (23), GC content bias (37), etc. Lahens

et al. points out the bias in RNA sequencing is highly unpredictable and might be more

complicated than the few reasons aforementioned (38). Interestingly enough, using the bias

correction features in Cufflinks does not lead to an increase in performance even in the real

data, all probes Pearson’s r 0.672 vs. 0.670 without/with bias correction (-b option). By

allowing different subexon bins to have different conditional probabilities, Strawberry model

has more flexibility than models assuming uniform distributions of reads along transcripts

and thus may be able to account for the bias problem to some extent. However, the bias

problem is still a big problem for RNA-Seq and its application. The solution to this will

require effort from both the sequencing and bioinformatics communities.

Materials and methods

Assembly problem formulation

Strawberry formulates the assembly problem as an optimization problem, trying to

find a parsimonious representation of transcripts which best explains the read alignments.

Cufflinks is one of the pioneers which formulates the assembly problem as an optimization

problem. Thus, we start with a brief review of the Cufflinks assembly algorithm and use it

to introduce Strawberry’s assembly algorithm.

The set of all read-pairs at a locusR = {r1, . . . rm} forms a partially ordered set in which

ri ≤ rj if and only if the start position, in the transcription direction, of ri is less than or

equal to rj and the two are compatible (can arise from the same transcript). In brief, two

read-pairs are incompatible if they imply two different introns and the two introns overlap

(cannot arise from the same isoform) (1). Cufflinks defines a read-pair path p as a subset

of R, an ordered set of read-pairs {ra1 , . . . , rak} with ra−1 ≤ ra for all 1 < a ≤ k. Then, the
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assembly problem is equivalent to finding the read-pair path cover C = {p1, . . . , pn}, where

‖C‖0 is minimized and

∀r ∈ R,∃p ∈ C ∧ p 6= ∅, such that r is in p.

The final estimated path cover Ĉ corresponds to the set of assembled transcripts. This is

a canonical computer science problem known as the Minimum Path Cover (MPC) prob-

lem (17). Cufflinks uses a maximum matching algorithm in bipartite graphs to solve the

MPC problem (1).

Instead of working with individual read-pairs, Strawberry uses a sparse representation

called splicing graphs, a common feature of genome-guided methods. Heber et al. defines

a splicing graph G = (V,E) as a directed acyclic graph (DAG) on the set of transcribed

positions V and edge set E (18). G contains an edge from vi to vj if and only if vi < vj and

they have consecutive positions in at least one transcript. The graph G can be refined by

collapsing consecutive vertices if all of them have only one outgoing edge and one ingoing

edge. When doing so, the vertices V become exons (or subexons) and edges E become

introns (18). We use the term,subexons, to refer to such entities throughout this paper to

avoid confusion with real biological exons. Note that subexons are ordered such that vi < vj

if subexon vi starts upstream of subexon vj . Furthermore, a read-pair path can be mapped

to an ordered collection of subexons, which we call a subexon path.

The splicing graph can be constructed from either a set of transcripts or from read-pairs.

Under the assembly mode, Strawberry builds splicing graphs from read-pairs and then

assembles the nodes (subexons) into transcripts. Under the splicing graph representation,

a similar MPC problem arises on the subexon level. Since the splicing graph is a sparse

representation of the read-pairs, assembly on the splicing graph is more time efficient than

assembly with the read-pairs. This subexon representation also has a positive impact on

quantification, since read-pair counts on subexons can be seen as compact sufficient statistics

for our quantification model. The idea of quantification is discussed in more detail in the

quantification section.
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Our flow network algorithm requires some modifications on the splicing graph. A source

node vs connecting to all subexon(s) at the 5’ end site(s), and a target node vt connecting

to the subexon(s) having at the 3’ end site(s) are added to the splicing graph. We use the

word (s, t)-path (in order to reserve the use of subexon path for quantification) to refer to

an ordered set of subexons from vs to vt, inclusive. Notice that vs and vt are not real exons.

Our new MPC problem on the splicing graph can be defined as finding a minimum set of

(s, t)-paths which can cover every subexon at least once. The purpose of including nodes,

vs and vt, is to remove partial or incomplete transcripts. In other words, each full transcript

corresponds to a (s, t)-path which flows from a promoter region (vs) to a terminator (vt).

Constructing a weighted splicing graph

To define nodes and edges in the splicing graph, Strawberry separately retrieves primitive

exons from the coverage data and retrieves introns from junction alignments. A primitive

exon is defined as a continuous stretch of genomic positions covered by reads. An intron is

defined as a unique junction alignment. The introns are then used to cut the primitive exons

into subexons which are the final nodes defined in the splicing graph (Fig 3.8). However, in

simulated data, many inferred introns are not real because of false junction calls by aligners.

There is evidence these false calls also appear in real data (19). Strawberry uses the same

criteria to pre-filter introns as in Cufflinks (1). The thresholds are arbitrary but work well

in practice. Putative introns are discarded if any of the following apply.

• More than 70% of the reads supporting an intron are not uniquely aligned.

• If two introns overlap and one’s expression is less than 5% of the other, then the one

with lower expression is removed. Intron expression is defined as the total number of

junction reads.

• The number of small overhang reads supporting a junction is likely to be low under

the assumption that reads are distributed uniformly along their parent transcripts.
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A small overhang read is a particular junction read where one end of the read is

mapped within a small distance (we use 6 bp) of a subexon-intron boundary. The

expected number of small overhang reads is calculated from a binomial distribution,

Bin(n, p), where n is the total junction reads and p = 2s
l−1 , s being the small overhang

distance and l being read length. When n is large (e.g., > 100), we use the normal

approximation N(np, np(1− p)).

Next, nodes (subexons) are connected in the splicing graph. Each subexon is either

fully contained or excluded in any transcript. Two subexons are connected by an edge,

which does not necessarily represent an intron, when they are consecutive in their genomic

coordinates (see Fig 3.8). For the non-intron edges, the number of reads covering at least

6 bp of both subexons is used as the edge weight representing the support for these two

subexons being in the same transcript. For the intron edges, the weight is simply the total

junction read number. In the implementation, Strawberry negates the weight and adds the

maximum weight to make all weights positive. The algorithm, described next, will solve for

the minimum total weight.

Optimization with flow network

We have reformulated the problem on a splicing graph G, where (s, t)-paths (full-length

transcripts) are ordered collections of subexons, and we seek a minimum path cover (MPC)

ofG. The ordinary MPC problem is not a good fit for the splicing graph since it only requires

that every node (subexon) is covered at least once, leaving the possibility that some edges

(indicating two subexons are consecutive in the transcriptome) might not be covered. Also,

a read-pair (due to the unsequenced proportion) can span two non-consecutive nodes. These

non-consecutive nodes (if they exist) constitute a subpath (Fig 3.9), denoted by psub, that

also must be covered by at least one (s, t)-path in the cover. All the edges and subpaths

constitute the constraints in a Constrained MPC (CMPC) problem. An efficient algorithm

for solving the Constrained MPC (CMPC) problem has been advanced (20).
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Definition 1 CMPC problem. Given a DAG G with nodes V (G) and edges E(G), and a

weight w(e) for each e ∈ E(G), and a set of subpaths {psubj |j ∈ 1, ..., t} the task is to find a

minimum number of k directed paths {pi|i ∈ 1, ..., k} in G such that

• Every node in V (G) occurs at least once in some pi.

• Every edge in E(G) occurs at least once in some pi.

• Every path psubj is entirely contained in some pi.

• Every path pi starts in vs and ends in vt, where vs and vt are the source and target

nodes of G.

•
∑k

i=1

∑
e∈pi w(e) is minimum among all solutions of k paths.

Rizzi el at. showed that the CMPC problem can be reduced to the MPC problem with

node constraints (20). The MPC with node constraints can be found using one of the

well established flow network algorithms, e.g., the min-cost circulation flow algorithm (17),

where a strong polynomial time solution is guaranteed. In a nutshell, a flow network is a

DAG G = (V,E) with source vs ∈ V (G) and target vt ∈ V (G), where every edge e ∈ E(G)

has an upper u(e) and lower l(e) capacity limit and flow f(e) associated with it. The

solution to a flow network problem is to construct a map, f : E → R, which maps an

edge to a real number or an integer, called a flow. The flow decomposition theorem (see,

e.g., (17)) guarantees the flow network can be used to solve the MPC problem. It says that

the flow f(e) on edge e can be decomposed into a set of flows on the (s, t)-path. However

the decomposition is not unique, which we overcome using a greedy algorithm.

Algorithm 1 Constrained Minimum Path Cover Algorithm (CMPC) (20)

1. Add edges to the subpath constraints. Let P sub = {psubi } denote the set of subpath

constraints. Grow the P sub to include all edges as subpath constraints.

2. Drop duplicates. For every pair of path constraints psubi and psubj , set P sub to P sub\psubi ,

if psubi is contained in psubj .
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3. For every original path constraint psubi which starts at node u and ends at node v and

(u, v) /∈ E(G), do:

• E(G) := E(G) ∪ {(u, v)}. Add a new edge (u, v) directly from the start node of

the subpath to the end node of the subpath.

• Set the lower and upper bounds for this new edge: lower(u, v) = 1 and upper(u, v) =

inf.

• The weight of the new edge is the sum of weights of the original subpath: w(u, v) =∑
e∈psubi

w(e).

4. For each e ∈ E(G) and e /∈ P sub, set lower(e) = 0 and upper(e) = inf.

5. Add an edge (vt, vs) from sink node vt to start node vs to complete the circle. Set

lower and upper bounds for this edge as well: lower(t, s) = 0 and upper(t, s) = inf.

6. Compute a min-weight min-flow circulation on this transformed input G with the

following properties.

• G is a flow network which satisfies capacity constraints and flow conservation

constraints.

• Min flow:
∑

e∈E(G) f(e) is minimum.

• Min weight:
∑

e∈E(G)w(e) is minimum.

7. Finally, the integer flow on edge (vt, vs) equals to the achieved min-flow. We de-

compose the flow network into this number of paths and each path corresponds to an

assembled transcript.

Fig 3.9 demonstrates a toy example of this algorithm.

Quantification with latent class model

Strawberry’s quantification model is based on the generative model proposed in (1). As

in Salzman et al. 2011 (16), Strawberry collapses data into sufficient statistics, but to match
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the assembly, Strawberry collapses the data into subexon paths, defined on the splicing

graph. In theory, for a gene with w subexons, Strawberry produces 2w−1 equivalent classes

independent of the number of isoforms. In contrast, the number of classes in (16) depends

on the number of isoforms. Although Salzman et al. 2011 achieves greater collapsing,

Strawberry has a richer parameterization and is able to account for nonuniform distribution

of the reads along a transcript. Either way, the idea of collapsing greatly reduces the number

of observations and speeds up the calculation.

To describe the Strawberry model, we start with the definition of subexon path. A read-

pair can be reduced to a unique set of ordered subexons, called a subexon path. The map

from read-pair space R to subexon path space S is surjective. Strawberry’s data reduction

strategy creates an equivalency between the subexon paths S and a partition of fragments

F (and hence reads R). It collapses read-pairs based on the set of subexons they cross.

Let S = {S1, S2, . . . , SL} be the collection of subexon paths. Subexon paths are equivalent

to sets of genomic intervals {[Gsx, Gsy] | ∀s ∈ Sl}, where Gsx and Gsy are the smallest and

largest genomic positions in subexon s. Each observable read-pair r can be represented as a

4-tuple, (u5′ , u3′ , d5′ , d3′), where u and d represent the upstream and downstream reads, 5′

and 3′ their respective ends, both along the transcription direction. Then we can partition

(or project) the R onto S, so that a read pair r is assigned to a subexon path Sl if and

only if r overlaps with only subexons in Sl and all subexons forming Sl have been hit by

this r, i.e., r ∈ Sl ⇔ cond.1 ∧ cond.2, where cond.1 = ∀s ∈ Sl, [Gsx, Gsy] ∩ [u3′ , u5′ ] 6= ∅ ∨

[Gsx, Gsy]∩ [d5′ , d3′ ] 6= ∅ and cond.2 = ∀j ∈ [u3′ , u5′ ]∪ [d5′ , d3′ ] ,∃s such that j ∈ [Gsx, Gsy].

This definition ensures each r is uniquely assigned to a Sl. Notice, if a read pair contains an

unsequenced portion, such as the insert, the subexon path of the read-pair is an incomplete

observation of the unobserved set of subexons. However, when conditioning on the isoform,

a subexon path can become a complete observation of the fragment from which the read-

pair is generated. Therefore, an subexon path can be included or excluded from an isoform

just like the read-pair. For each gene g, we derive a binary matrix C with Lg rows and Kg
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columns, where we assume gene g has Lg subexon paths and Kg isoforms and Ckl = 1 if

isoform k contains subexon path l, otherwise 0. If there are total ng read-pairs observed for

gene g, we derive our observation {yi}ng , where each element yi identifies the subexon path

of the read-pair i, i.e., yi is an Lg-dimensional vector, one of the standard basis vectors of

Lg-dimensional Euclidean space. In practice, Strawberry only uses the observed subexon

path whose number so Lg is smaller than the theoretical number.

Like the assembly, this model handles one locus from a single sample at a time, allowing

maximum parallelization. Our generative model for RNA-Seq is as follows. Transcripts from

isoform k make up a proportion ηk in the sample. Transcripts are randomly fragmented, and

long isoforms produce more fragments than short isoforms. Isoform k fragments constitute

approximately proportion πk ≈ lkηk in the sample. Having estimated π̂k and knowing lk, we

can later retrieve ηk (1). Given the isoform of origin k, the fragment is considered as gener-

ated from the underlying subexon path as a one-trial multinomial experiment Mult(1,θk·),

where θkl is a conditional probability of the fragment generating from subexon path l. For

a given read set R = {yi}n, the likelihood can be written as

L(π,θ | R) =

n∏
i=1

K∑
k=1

πk

L∏
l=1

θyilkl (3.3)

Following the line of generative model of sampling transcripts first and then the frag-

ments conditioning on the transcript and accounting for the read-isoform assignment uncer-

tainty using a mixture model. Strawberry simultaneously estimates the class probability π

and the conditional probability θ under a EM algorithm (21) framework, while other models

(1; 6; 22; 16) assume fixed conditional probability when estimating the class probabilities.

Strawberry has a richer set of parameters which allow it to account for the non-uniform

distribution of reads along transcripts often observed in real data (23; 24). Jiang et al.

also proposed a model that simultaneously estimates the class probabilities and conditional

probabilities for robust estimation of isoform expression (25) . However, their model has

far more parameters than ours and uses a penalized likelihood. Because they don’t publish

their program, the actual performance of their model is unknown.
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Estimation

We use the EM algorithm proposed for basic latent class models (26) and summarize in

algorithm 2:

Algorithm 2

• Initialize

πk = 1/K,

θkl =
∑
t

q(t) · nklt
lk − t+ 1

,

where we sum over possible fragment length t conditioning on subexon bin l and isoform

k. Here, q(·) is the empirical fragment distribution and nklt is number of possible

fragments with length t and lk is the isoform length.

• repeat EM steps until convergence.

– E-step:

n̂kl
m+1 =

nlπ̂k
mθ̂kl

m∑K
k=1 π̂k

mθ̂kl
m .

– M-step:

π̂k
m+1 =

∑L
l=1 n̂lk

m+1

n
,

θ̂kl
m+1

=
n̂kl

m+1∑L
l=1 n̂kl

m+1
.

The parameter θ is initialized using the concept of read type (same as our read-pair

concept) and sample rate α in (16). The probability of observing a read pair r is
∑K

k=1 πkαkr

where

αkr =


q(tk)

lk−tk+1 , if r is compatible to isoform k.

0, if r is not compatible to isoform k.

We use tk to denote the fragment length of a read-pair under the isoform k. Note that

Salzman et al.’s model assumes reads are generated uniformly when its isoform of origin
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is known. Strawberry learns an empirical fragment size distribution q(·) from a place in

genome (> 2kb) where no alternative splice sites exist according to the read alignments.

If the input is single end reads, Strawberry relies on the users to define a Gaussian dis-

tribution for the fragment length. We assume the random fragmentation step in sample

preparation leads to a nearly Gaussian distribution (24), but it is common to approximate

the distribution using an empirical one (1).

Strawberry calculates the initial estimate of θkl for each pair of isoform k and subexon

path l by summing αkr over all potential read-pairs on subexon path l including the ones

that are not observed:

θkl =


∑

r∈Sl αkr, if Ckl = 1.

0, if Ckl = 0.

(3.4)

The summation in Eq 3.4 requires summing over all possible fragment lengths and condi-

tioning on a fragment length, the possible 5’ end which r can be generated from a given

subexon path and transcript combination (Fig 3.10).

Implementation

Strawberry was written in C++14 and utilizes features such as threading library for

parallelization. Lemon (27), a C++ graph template library, was used in assembly and

Eigen3 (http://eigen.tuxfamily.org), a C++ template library for linear algebra, was

used in quantification. Strawberry is available as a free software at https://github.com/

ruolin/strawberry under the MIT license.

Conclusion

This paper introduced Strawberry, a fast, accurate genome-guide assembler and quan-

tification tool for RNA-Seq data. It facilitates transcriptome assembly and calculation of

transcript-level expression. Based on our simulation, Strawberry not only recovers more

true transcripts while achieving the same false discovery rate in assembly compared to two

http://eigen.tuxfamily.org
https://github.com/ruolin/strawberry
https://github.com/ruolin/strawberry
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other leading methods but also outperforms them in terms of the quantification accuracy.

Using the real data from a highly cited method comparison study, we again show that

Strawberry beats Cufflinks and StringTie by convincing margins. The other advantage of

Strawberry is its speed and good scalability, makes it an intriguing candidate when process-

ing large dataset (e.g., > 100 million reads). It takes 12.35 min for Strawberry to process

100 million input RNA-Seq reads while a simple Linux program wc takes 8.69 min. Straw-

berry achieves this level of speed and accuracy through applying the min-cost, min-flow

algorithm to assembly, a reduced data representation to subexon path counts which arise

naturally from the splicing graph and latent class model used in the quantification step.

Strawberry is written in C++14 and is fully self-contained. The installation does not require

any pre-installation packages except for g++ compiler and CMake. Strawberry applies to

both single-end and paired-end libraries, and also supports strand-specific protocols.
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Figure 3.1 Overview of the algorithm of Strawberry, compared to StringTie and Cufflinks.

All methods begin with a set of RNA-Seq alignments and output transcript

structures and abundances in GFF/GTF format. Strawberry uses a min-flow

algorithm for solving Constrained Minimum Path Cover(CMPC) problem on

splicing graph, followed by assigning subexon paths to compatible assembled

transcripts. In quantification step, all of the RNA-Seq read alignments on each

subexon path as a whole are the subject of the EM algorithm.
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Figure 3.2 recall and precision at the nucleotide, exon, intron and transcript level.

StringTie, Cufflinks and Strawberry were run on data RD100, which is a sim-

ulated Arabidopsis RNA-Seq data set.
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Figure 3.3 Box plots of F1 scores at the transcript and loci level. StringTie, Cufflinks

and Strawberry were evaluated on data GEU, which is a simulated Human

RNA-Seq data set.
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Figure 3.4 Frequency plot of Proportional correlation, Spearman correlation, Mean Ab-

solute Relative Difference (MARD) for the 10 replicates in RD100, which is a

simulated Arabidopsis data.
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Figure 3.5 Frequency plot of Proportional correlation, Spearman correlation, Mean Ab-

solute Relative Difference (MARD) for the 6 samples in GEU, which is a sim-

ulated Human data. These statistics are calculated based on the predicted

FPKM values of all reconstructed transcripts and the true FPKM values used

in the simulation.
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Figure 3.6 Read alignments and reconstructed transcripts at gene NAT14 using HepG2

data. A new isoform, transcript.14285.3 (shown as the middle one),

has been identified by Strawberry. The junction reads that support

the new AS event (alternative 3 splice site) are highlighted. The two

ends of a read-pair are in the same color. A total 7 uniquely mapped

read-pairs supports the novel junction. This figure is made by IGV

(http://software.broadinstitute.org/software/igv/)

http://software.broadinstitute.org/software/igv/
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Figure 3.7 Running time in minutes of Cufflinks, Strawberry, linux word count and

StringTie(ordered by slowest to fastest) on textitRD25(2.5 million reads),

RD100 (10 millions reads), and HepG2 data(100 millions reads).



www.manaraa.com

102

Figure 3.8 Translation of read alignments into a splicing graph. (a) Eleven imaginary

aligned paired-end reads (or read-pairs) are represented by light blue boxes in-

tersected by solid lines, which indicate splicing junctions, and broken lines,

which indicates gap sequences. Above the read-pairs, the coverage plot is

shown. The white regions have zero coverage. Below the read-pairs, three

primitive exons are shown as purple boxes and five subexons in dark blue,

numbered from 1-5. (b) The splicing graph constructed from part (a). The

numbered nodes in the splicing graph are subexons from part (a). Dashed Ar-

rows represent the non-intron edges and solid arrows indicate the intron edges.

The numbers next to edges are the weights(number of read-pairs supports). A

read-pair that contributes to an edge weight is stressed using an asterisk near

its upper-left corner. All the arrows also indicate the transcription direction.

The source node and target node in the splicing graph are not shown.
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Figure 3.9 An input flow network with a subpath constraint {2-4-7}. (a),the number

next to an edge is the edge cost. For every edge e, the edge constraint im-

plies 1 ≤ f(e) ≤ inf. (b), the transformed min-flow circulation network.

The 2-tuple (a,b) next to each edge indicates the optimal flow on the edge

and the edge cost respectively. After Step 3, the path constraints set is

P sub = {(1, 2), (1, 3), (2, 4, 7), (4, 5), (4, 6), (5, 8), (6, 8), (7, 8)}. Two edges no

longer in the constraint set are shown in green. For these two edges, the min-

imum flow requirement is 0; for the rest of edges, it is 1. Two dummy nodes,

s and t, are added to complete the circulation. The number of flows after

decomposition is equal to the minimum flow which is 3.
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Figure 3.10 (a), a gene with three subexons and two isoform are shown. The length of i1

is 260 bp, i2 200 bp. A paired-end read (or read-pair) is represented by light

blue boxes intersected by broken lines, which indicates gap sequences. The

read length is 50x2 bp. (b) A subexon path {s1, s3} applies to both isoform.

When on i1, this subexon path implies three subexons with the one in middle

shown in gray. Consider a fixed size fragment with gap size 75 bp(shown in

gray) and total fragment length 175 bp. This particular fragment can arise

from 16 different positions from subexon path {s1, s3} on i1 and 26 different

positions from subexon path {s1, s3} on i2.
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Supporting information

S1 Fig RD60 assembly result. recall and precision at the nucleotide, exon, intron

and transcript level for StringTie, Cufflinks and Strawberry at RD60 data.
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S2 Fig RD25 assembly result. recall and precision at the nucleotide, exon, intron

and transcript level for StringTie, Cufflinks and Strawberry at RD25 data.
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S3 Fig RD60 quantification result. Frequency plot of Proportional correlation,

Spearman correlation, Mean Absolute Relative Difference (MARD) for the 10 replicates in

RD60 data.
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S4 Fig RD25 quantification result. Frequency plot of Proportional correlation,

Spearman correlation, Mean Absolute Relative Difference (MARD) for the 10 replicates in

RD25 data.
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S5 Fig Box plots of F1 scores at the exon and intron level. StringTie, Cufflinks

and Strawberry were evaluated on data GEU, which is a simulated Human RNA-Seq data

set.
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S6 Fig Frequency plot of Proportional correlation, Spearman correlation,
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Mean Absolute Relative Difference (MARD) for the 6 samples in GEU, which

is a simulated Human data. These comparisons include only the reconstructed

transcripts that fully match the known transcripts.

S1 Data. GEU simulation data. The GEU simulation pipeline and a step by step

tutorial about how to generate the simulation and conduct the evaluation can be found at

https://github.com/ruolin/strawberry_comp.
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CHAPTER 4. RSTRAWBERRY: DIFFERENTIAL ALTERNATIVE

SPLICING from MULTIPLE SAMPLES

4.1 Introduction

A change in relative isoform expression can be measured when comparing samples from

one condition to another. A significant change implies differential alternative splicing

(DAS). Currently, two major paradigms exist for recognizing relative isoform expression

from RNA-Seq samples. Transcript-centric methods seek to reconstruct isoform expression

and then compare the relative expression across conditions. However, estimating isoform

expression from short reads is not an easy problem and biased estimation can disrupt dif-

ferential analysis. Thus, event-centric methods focus on comparing the direct evidence of

read supports for AS (Alternative Splicing) events. For short read technologies, transcript-

centric models need to deal with the extra uncertainty of phasing short read into overlapping

isoforms. Although event-centric methods can avoid the “phasing” problem by localization,

they do not address the fundamental question that which isoforms result in the expression

pattern changes. This is because a single AS event can be shared by multiple isoforms, e.g.,

a cassette exon is spliced in two isoforms but spliced out in the other two isoforms.

We proposed rStrawberry, a transcript-centric method for differential alternative splicing

detection. By extending the single sample quantification model introduced in (1), rStraw-

berry utilizes a multinomial logit regression which regresses transcript relative abundances

on a set of covariates to explain replicate and condition effects. Also, the quantification

model in (1) is unable to deal with two major issues that often adversely affect the differ-

ential splicing analysis, which are coverage bias and count variability.

Firstly, compared to DNA Sequencing, RNA-Seq is subject to a higher degree of coverage

bias (5). It is well known that the distribution of read coverage along transcripts is generally
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nonuniform. (3; 5; 8) have shown that bias is caused by local sequences (e.g., hexamer

bias) around the read starts, positions of the reads, GC content bias, etc. (2) shows that

the random hexamer priming is not random and creates read start bias on the Illumina

platform regardless of organism and laboratory. Also, (5) shows that some RNA-specific

library preparation step, e.g., reverse transcription PCR, introduce GC-bias. And (9) have

confirmed there is a coverage bias caused either by the sequence of the underlying fragment,

the RNA-Seq experiment itself or the interaction of these two. These biases bring an

extra level of variations in addition to biological variations. To overcome the coverage

bias, rStrawberry uses a dual-phase algorithm. During the bias correction phase, another

multinomial logit regression model is trained on single-isoform loci across all samples to

discover relationships between subexon path probability and the underlying local sequence

information such as GC-content, existence of high GC-stretches and hexamer context. Then

during the second phase, the differential splicing analysis algorithm uses the fitted path

probabilities instead of the observed path probabilities.

Another challenge is due to the “count” nature of RNA-Seq data and the variability

in count measurement across biological replicates. Unlike microarrays which measure the

fluorescent intensity, researchers have to deal with the read counts when it comes to RNA-

Seq. Because of the discrete count nature, we have rather limited model choices. To make

matters worse, RNA-Seq counts are usually over-dispersed (see Appendix A.2). As a result

of overdispersion, models such as Poisson, binomial/multinomial alone are not suitable for

RNA-Seq. More generalized distributions, e.g., negative-binomial are more suitable for

this kind of overdispersed count data. To account for the count overdispersion, rStrawberry

employs an empirical Bayesian model which places shrinkage priors on the multinomial logit

regression coefficients. These priors are analogous to the gene-specific negative-binomial

dispersion parameter and are estimated by borrowing information across all loci.

To my knowledge, rStrawberry is the first to simultaneously estimate transcript abun-

dances and identify differential alternative splicing at the transcript level. Existing methods
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either measure at the level of splicing events (for example inclusion or exclusion of a par-

ticular cassette exon), e.g., DEXSeq (11), or detect at the level of genes, e.g., Cuffdiff

2 (13). rStrawberry, instead, calculates the significance of which transcripts are differen-

tially spliced.

4.2 Differential alternative splicing detection model

4.2.1 Definitions and notations

rStrawberry deals with RNA-Seq experiments that compare two experimental condi-

tions. For each condition, replicate RNA-Seq libraries are generated and sequenced. These

reads are processed using specialized bioinformatics tools to align to a reference genome.

The set of genes and transcripts, i.e., exon-intron structures, are given a priori for all sam-

ples. Given a set of locus Λ (which may contain only one locus (the place of a gene) or

all loci in a species), let g ∈ {1, . . . , G} denote genes and k ∈ {1, . . . ,K} index transcripts

from Λ with K ≥ G. In Illumina technology, reads can appear in pairs, with one read

generated from each end of a sequenced template. Thus, a read-pair, denoted by r, refers to

aligned paired-end reads with sequences observed at both ends and an unknown sequence in

between. On the other hand, a read refers to either the upstream or downstream observed

sequence of a read-pair. For single-end reads, replace the terminology “read-pair” with

“read” and proceed. The word fragment is used to describe an actual DNA fragment that

is being sequenced. There exists a surjective map from the fragments F to read-pairs R.

A read-pair may imply different fragments under different transcripts.

In addition, a transcript is a sequence of alternating exons and introns. A set of tran-

scripts at a locus can be represented as a splice graph consisting of exons (or subexons)

as vertices and edges connecting exons across introns. A subexon is a maximal portion

of an exon that appears intact in all transcripts. An exon is split into two subexons, for

example, if it contains an alternative splice site that is used in some transcripts. Edges

have length zero when traversing subexons within an exon. A read-pair can be represented
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as a unique set of ordered nodes, called a subexon path. Notice, if the underlying sequence

of a read-pair contains an unsequenced portion, such as the insert, the subexon path of

the read-pair is an incomplete observation of the unobserved set of subexons from which

it is generated. However, when conditioning on the transcript, a subexon path becomes a

complete observation. Also, a subexon path can be included or excluded from an transcript

and thereby, I derive a sparse binary matrix C with L rows and K columns, where L is the

total number of subexon paths. Clk = 1 if transcript k contains subexon path l, otherwise

0. For each column, Lk = {l : Clk = 1} is a set of subexon path l that are included in the

transcript k.

Let j ∈ {1, . . . , J} index samples, both conditions and all replicates, where J = J1 + J2

and J1 and J2 are the numbers of replicates for condition 1 and 2. I follow the standard

that all the replicates from condition 1 have smaller indexes than all the replicates from

condition 2. For sample j, let the number of mapped read-pairs for the set of locus Λ be

nj , and rji be the ith read-pair from the jth sample.

4.2.2 Likelihood function and priors

Let {rji} denote the observations which are uniquely mapped fragments to the genome.

The response variables are represented as a row-wise matrix Y = {yji}, where each row yji

identifies the subexon path of the read-pair rji, i.e., yji is an L-dimensional vector, one of

the standard basis vectors of L-dimensional Euclidean space. Specifically, if the observed

subexon path is l, then yjil = 1 and yjil′ = 0 for all l′ 6= l. The predictor variable,X = {xji},

is also a row-wise matrix with the same number of rows as Y . Each element xji indicates

the experimental condition and replicate of read-pair rji. In addition, I encode W = {wkl},

where wkl are coverage bias covariates representing relevant sequence signals, such as GC

content or existence of high GC stretches, that might affect the fragment selection during

the RNA-seq experiment (8). To be specific, covariates W include a basis function of

natural cubic spline for GC-content (knots at 0.4, 0.5, 0.6, and boundary knots at 0.3
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and 0.7), a basis function of natural cubic spline for hexamer entropy (knots at 4,5,6 and

boundary knots at 3 and 7) and 4 indicator variables for high-GC stretches, respectively,

80 GC-content or higher in a 20 nt stretch, 90 GC-content or higher in a 20 nt stretch,

80 GC-content or higher in a 40 nt stretch and lastly 90 GC-content or higher in a 40 nt

stretch. These signals are known quantities given the transcript k and subexon path l. In

addition, there is a unique mapping from rji to wkl once the read-pair has been assigned

to a transcript k with Clk = 1. This formulation assumes all read-pairs from the same

transcript and the same subexon path share the same coverage covariates.

Our generative model assumes transcript k with length τk makes up proportion ηk in the

sample. Transcripts are randomly fragmented, and long transcripts produce more fragments

than short transcripts. Transcript k fragments constitute approximately a proportion of

πk ∝ τkηk in the sample. Having estimated π̂k and knowing τk, we can later derive ηk.

Each read-pair is considered as generated from one, possibly unobserved, transcript (latent

class). Given the latent class, observation yji is the realization of a one-trial multinomial

experiment Mult(1,θk·) where θkl is the probability of generating a fragment from subexon

path l conditioned on transcript k. Note that θkl does not depend on sample j and read

i, and is used to model transcript coverage effects, including possible coverage bias. Since

the coverage biases are usually caused by library preparation steps and sequencing steps,

we assume coverage biases are independent of replicates and experimental conditions. My

model assumes that the entire effect of experimental conditions on the transcript expression

is through changing the relative abundances of transcripts; reflected in the model, it is πk.

Conditional on the transcript, all the samples share the same coverage biases encoded in

θkl. In particular, the goal is to detect differential transcript expression, i.e., differences in

πk across experimental conditions and θkl is a nuisance parameter.

To link π with the experimental conditions, a generalized linear (multinomial) logit link
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function was used:

πk(xji) =
exp

(
x′jiβk

)
∑K−1

t=1 exp
(
x′jiβt

)
+ 1

, for k 6= K. (4.1)

Here, βk is a J dimensional parameter vector, including βk0 the baseline level of transcript

k, βk1 the effect of condition on transcript k, and βk2, . . . , βkJ the effect of replicates on

transcript k, which represent isoform level dispersion parameters. In practice, the covariate

xji includes a constant term 1, one dummy variable for the experimental condition, and

J − 2 dummy variables for replicates and only one of the J − 2 dummy variables is 1 and

the rest are 0. In addition, to ease the notation, I write xj instead of xji because the read

from the same sample have exactly same covariates, i.e., xji = xj , ∀i.

The effect of GC-bias on coverage is believed to be non-linear (8). Multinomial logit

regression is known for modeling non-linear relationships. Therefore, we use another multi-

nomial logit regression for θ. Since our model assumes a constant bias effect across samples

and conditions, a nontraditional formulation is needed. In our formulation, the coefficients

do not vary across outcome categories. Instead, the same coefficient vector α operates on

different predictors wkl. Specifically, given a fragment from transcript k, the subexon path

l is generated with probability

θkl(wkl) =


exp(w′klα)∑
t exp(w′ktα)

Clk = 1,

0 Clk = 0.

(4.2)

Putting the components together, the latent class regression model likelihood can be

written as:

L(π,θ | {yji,xj ,wkl,Λ}) =
J∏
j=1

nj∏
i=1

K∑
k=1

[
πk(xj)

L∏
l=1

θkl(wkl)
yjil

]
. (4.3)
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It simplifies as

L(π,θ | {njl,xj ,wkl},Λ)

=
J∏
j=1

nj∏
i=1

K∑
k=1

L∏
l=1

[πk(xj)θkl(wkl)]
yjil

=

J∏
j=1

nj∏
i=1

L∏
l=1

[
K∑
k=1

πk(xj)θkl(wkl)

]yjil

=

J∏
j=1

L∏
l=1

[
K∑
k=1

πk(xj)θkl(wkl)

]njl
,

where njl is the number of read-pairs from sample j with subexon path l. The second

equation is valid because yjkl ∈ {0, 1} and
∑L

l=1 yjil = 1.

In the Eq. 4.1, βk contains parameters accounting for transcript-level overdispersion

across samples. However, the per-transcript coefficient estimation is highly unstable. Also,

to borrow information across genes, we use a hierarchical model and assume βkj | γj
iid∼

N(0, γj) such that γj (precision parameter) is analogous to the gene-specific negative-

binomial dispersion parameter. Next, for model simplicity, a conjugate prior is placed

on γj so that γj
iid∼ Gamma(a0, b0). The hyperparameters a0 and b0 are estimated in the

following way. The likelihood function 4.3 is first fitted for all loci, but 5 loci at a time.

Then γj is estimated using a method of moments method based on the coefficients estimates

β̂k. Finally, a maximum likelihood estimation is obtained only through the 75% percent

quantile (0.125-0.875) of all γj , to avoid the effect of outliers.

4.2.3 Bias correction

rStrawberry learns the bias coefficient α in Eq. 4.2 from a subset of the input data

where there is no ambiguity in assigning read-pairs to transcripts. Then α is held constant

when actually fitting the Hierarchical Bayesian model. Assume now drop the notation

for transcript k and let l index all subexon paths in all single isoform genes, and yl the

read-pair count for path l. Note that wl is the predictor vector of path l and α is the

universal coefficient vector. To calculate the subexon path probability α, an equivalent
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Poisson regression model is used:

Yl
ind.∼ Pos(exp(w′lα)).

This Poisson regression is fitted across all single-isoform genes to borrow information across

genes to make the estimation more robust. To convert this Poisson regression fit to a

multinomial probability vector θ, the following formula is applied:

θ̂l =
exp(α̂′wl)∑
j exp(α̂′wj)

.

The bias model proposed here is different from (8) in that they calculates bias predic-

tors from all fragments while rStrawberry reduces the fragment data to subexon paths

which contain the underlying sequences of the fragments. A typical RNA-Seq sample of-

ten contains tens of millions reads and calculating bias predictors for all fragments is very

time-consuming. Therefore, in both theory and practice, rStrawberry’s model is orders of

magnitude faster than (8).

4.2.4 Model estimation

Let zji ∈ {1, . . . ,K} be the unobserved transcript source of the (j, i)th read-pair from

the set of locus Λ. The pair (yji, zji) can be replaced by a new L×K-dimension complete

data matrix hji indicating the transcript and exon path. Note, the row sums of hji equal

vector yji. Let njkl =
∑nj

i=1 hjilk be the hidden aggregate count of read-pairs from sample

j that are assigned with transcript k and subexon path l. Note that we often observe njl

but not njkl since the read-pairs are short can mapped to overlapping transcripts. The

unnormalized posterior of all parameter and hidden variables is:

P (β,γ,H | Y ,X,θ, a0, b0,Λ) ∝
J∏
j=1

L∏
l=1

K∏
k=1

[πk(xj ,β)θkl]
njkl

K∏
k=1

J∏
s=1

[N(βks | 0, γs)]

J∏
s=1

Ga(γs | a0, b0)

(4.4)
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where N(x | µ, γ) is the density of normal distribution with mean µ and precision γ and

Ga(x | α, β) is the density of gamma distribution with shape α and rate β. The selection

of the normal distribution and gamma distribution makes the model estimation simpler

so that we can avoid computationally expensive sampling procedure such as MCMC. The

graph model representation of this posterior model is in Fig. 4.1.

H Yπ

β
θ WW

α

γ

X

b0

a0

Figure 4.1 Graphical model representation of rStrawberry alternative splicing detection

model, where α, θ, a0, b0 are fixed parameters and W , Y , bX are observed

variables. Also, β and π are transformed parameters and thus their functions

are deterministic. Here, θ is the bias parameter. The inference is focused on

β.

The hyperprior a0, b0 and bias parameter θ are estimated using the techniques de-

scribed in section 4.2.2 and 4.2.3 before fitting the model 4.4. Instead of sampling from

this posterior, I derive an EM-like iterative algorithm to obtain point estimates that max-

imize the unnormalized posterior density. During an iteration, the unnormalized posterior

is maximized over β,γ,H, one at a time while holding the other parameters constant. The

posterior of njkl is a multinomial distribution and the MAP estimator is:

E(njlk) = njl
π̂jkθ̂kl∑K
v=1 π̂jv θ̂vl

.

Secondly, for γs, s ∈ {1, . . . , J}, we have

P (γs | β̂, â0, b̂0,Λ) ∝
K∏
k=1

[γ1/2
s e−

β̂2
ks
2
γs ]γa0−1

s e−b0γs

=γ
a0+J

2
−1

s e−(b0+
∑K
k=1 β̂

2
ks

2
)γs .
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This is the kernel of a gamma distribution and the point estimate of γs as the posterior

mode is:

γ̂s =
2a0 + J − 1

2b0 +
∑K

k=1 β̂
2
ks

.

Finally for β, we have:

P (β |X, n̂, γ̂,Λ) ∝
J∏
j=1

K∏
k=1

( ex
′
jβk∑K

t=1 e
x′jβt

)n̂jk e−∑J
s=1

γ̂s
2 (

∑K
k=1 β

2
ks),

where n̂jk =
∑L

l=1Clkn̂jkl. The object function for optimization is:

logL(β) :=
J∑
j=1

K∑
k=1

njk log(πjk)−
J∑
s=1

γ̂s
2

(
K∑
k=1

β2
ks

)
,

where πjk is a short form of πk(xj). Note that the last term acts as a L2 regularization

term and γ control the degree of penalization. Let I be the identity matrix and Ikp are

the elements of the identity matrix. To optimize this function, algorithms such as Newton-

Raphson can be used. To derived the gradient and hessian, I utilized the fact that ∇βpπjk =

πjk (Ikp − πjp)xj . Also, I write
∑K

p=1 njp = nj . Thus, we have

∇βp logL(β) =

J∑
j=1

(njp − njπjp)xj − γ̂ � βp

∇βq∇βp logL(β) =

J∑
j=1

njπjp(πjq − Ipq)xjx′j − Ipq ·Diag(γ̂),

where � is the element wise vector product and Diag(γ̂) is a diagonal matrix with γ̂ on

the diagonal. Finally, the observed covariance matrix of β at the estimates equal to the

negative diagonal of the inverse of the Hessian matrix. And the p values for β is calculated

as the z scores, which are the point estimates divided by the observed standard deviations,

in a standard normal distribution.

4.2.5 Implementation details

The implementation of model 4.4 and its inference is fully available in a Github project

called rStrawberry (https://github.com/ruolin/rstrawberry). This particular imple-

mentation makes use of the single sample quantification function of Strawberry (1). To be

https://github.com/ruolin/rstrawberry
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specific, each RNA-Seq sample is processed by Strawberry (https://github.com/ruolin/

strawberry) with –no-assembly and -f options. –no-assembly means that the assembly

module is disabled and Strawberry is using the input gene models, which could be the

known annotation or Strawberry’s assembly result. In addition, -f option is needed to

output the subexon path count table which summarizes all the input information that is

needed for the differential alternative splicing detection model. This information includes

the subexon path count Y , the number of isoforms for each gene K based on annotation,

the compatibility matrix C, the path GC content, hexamer entropy, indicator of high GC

stretches, i.e., theW covariate matrix. The C++ implementation ensures a fast turnaround

time (usually in minutes) for a typical RNA-Seq samples (100 million reads) which can take

hours if otherwise implemented in R.

The default behavior of rStrawberry is to perform the differential splicing inference per

locus. Although rStrawberry can group an arbitrary number of genes to a “super group”,

fitting on more than 20 loci together can lead to a large Hessian matrix which is expensive

to compute. When a transcript has low expression, the read assignment uncertainty is

usually large and can lead to excessive false positives. Therefore, rStrawberry has a default

expression filter that will filter out transcripts with FPKM < 1. However, this threshold

can be changed by the user and as long as one of the isoforms of a gene passes the expression

filter, all isoforms from that gene will be kept.

For optimization of the parameters β and γ in the posterior model 4.4, I choose to use

a well-developed and highly optimized statistical computational code base, called STAN

(https://github.com/stan-dev/stan). It is worth mentioning that STAN has its own

model language and the representation of STAN language of my model is in Appendix A.1

https://github.com/ruolin/strawberry
https://github.com/ruolin/strawberry
https://github.com/stan-dev/stan
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4.3 Result

4.3.1 Correcting RNA-Seq Coverage Bias

GEUVADIS (6) is a high-quality RNA-Seq consortium for the 1000 Genomes project.

GEUVADIS contains more than 600 RNA-Seq samples sequenced at 8 different European

labs, which allows us to study RNA-Seq technical bias, biological variations, etc. Fig. 4.2

is a Sashimi plot on gene USF2 from two RNA-Seq samples (ERR188021 and ERR188114)

from the GEUVADIS dataset. ERR188021 and ERR188114 are people from the same

ethnic group who were sequenced at different labs, UNIGE and CNAG-CRG respectively.

Following (8), CNAG-CRG is called center 1 and UNIGE is called center 2. Based on

the RefSeq hg19 gene model, USF2 contains two isoforms and ten unique exons. The two

isoforms differ by an exon skipping event at chr19:35760706-35760906, which is the second

exon in Fig. 4.2. This cassette exon happens to be a high-GC exon (GC-content 73). The

consecutive exon before the skipping exon is also a high-GC exon (GC-content 66).

Figure 4.2 GC Bias in GEUVADIS. Sashimi plot of ERR188021 and ERR188114

on USF2 gene. Sashimi plots quantitatively visualize splice junctions

for multiple samples from RNA-Seq alignments. This plot is produced

by IGV (https://software.broadinstitute.org/software/igv/Sashimi).

The bottom track is the genomic coordinates and the USF2 gene annotation

(only 3 exons). The middle track (shown in light blue) is the junction align-

ments of ERR188114 (from center 1) and the top track (shown in red) is for

ERR188021 (from center 2). This plot shows that samples from center 1 suffer

more coverage drops for high GC exons.

The PSI (Percent Splice In, percentage of junction reads supporting the cassette exon

being spliced in as opposed to being spliced out) for ERR188021 and ERR188114 on the

https://software.broadinstitute.org/software/igv/Sashimi
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USF2 gene are 0.858 and 0.941 respectively, which clearly indicates the spliced-in, long

isoform NM003367.2 expressed more compared to the short isoform NM207291.1 on both

samples. Without bias correction, however, Strawberry’s result shows that the short isoform

is more abundant than the long isoform on ERR188114, Fig. 4.3. A similar result has

also been observed for other software (8). The reason for this type of estimation bias in

ERR188114 is that there are significant coverage drops on high-GC exons including the

cassette exon. For reads that align to both isoforms, the generative model used in (1; 12)

assumes a higher probability that these reads come from the short isoform. After bias

correction, Fig. 4.3 clearly shows that rStrawberry has better expression estimation if some

transcripts contain high GC exons, which can lead to significant quantification bias in

Strawberry and Cufflinks.

To further show that rStrawberry’s bias model is able to capture and even predict the

variability of exon coverages, the model that is learned from the previous 6 samples is used

to predict the exon coverage for sample ERR188297, which was not used in the training.

Fig 4.4 shows the observed versus predicted subexon coverage density of a single isoform

gene NUP107 after normalization. Gene NUP107 contains 120 subexon paths and the

observed coverage of a transcribed position i is caculated as
∑

l∈Ti yl where Ti is the set

of subexons paths that cover position i and yl is the subexon path count as described in

section 4.2. To normalize the data, I convert the observed count to the frequency such

that the area under the curve is equal to 1. The plot shows that the bias model is able to

capture, to some degree, the variability of read coverage on transcripts.

4.3.2 Controlling false discovery rate

As previously mentioned, GEUVADIS can be a good negative control dataset and in-

deed, (8) uses this dataset to claim that the transcript expression levels estimated by Cuf-

flinks (12) and RSEM leads to a large number of false positives when their estimates are

used for differentially expression analysis.
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Three samples from center 1, ERR188204, ERR188317, ERR188453 and three samples

from center 2, ERR188021, ERR188052, ERR188088 are were selected as negative control

dataset. These samples are from the same ethnic group but were sequenced at two different

sequencing centers. The raw reads were aligned against the GRCh37 human genome using

HISAT2 (4). And I first ran Cufflinks v2.2.1 with “-G” option to execute annotation-

based transcript quantification against GRCh37 RefSeq gene annotation. Similar but not

restrict to isoform switching in (8), loci having more than one isoform and at least one

isoform expressed in all samples (> 0.1 FPKM) were selected in this study. A total 4468

genes, found by Cufflinks, fulfill this requirement. I then compared three methods, Cuffdiff,

DEXSeq, and rStrawberry, using three samples from center 1 as group 1 and the other three

samples from center 2 as group 2 to identify differential alternative splicing on these 4468

genes. These three methods report different sets of genes due to their built-in filters. In

addition, DSGseq is excluded from this comparison since it does output significant values.

Cuffdiff v2.2.1 was executed on the six samples using default parameters. A total of 3114

genes passed through its filter and were reported by Cuffdiff 2. These 3114 tested genes

intersected with the 4468 expressed genes to yield a final evaluation set which contains 2895

genes. Cuffdiff 2 produces a lot of “NOTEST” results. The reason why Cuffdiff 2 produces

“NOTEST” is not clear and its website describes “NOTEST” as caused by not enough

alignments for testing. Among the 2895 genes, only 17 of them (0.58%) are significant at

1% q value cutoff (table 4.1). This shows that Cuffdiff 2 is able to control the false discover

rate (FDR) below the expected level.

For DEXSeq, two Python scripts (download together with DEXSeq Bioconductor R

package) were first used to generate the exon count table where each row represents a

unique exon segment and each column corresponds to a sample. The DEXSeq R package

takes the count table and tests for differentially expressed (in DEXSeq paper they called

differentially used) exons. Only the exons from the 4468 expressed multi-isoform genes

were evaluated. Out of 56350 total tested exons, 2798 (5%) have multiple testing adjusted
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p values less than 0.01 (table 4.1), which indicated that DEXSeq failed to control FDR at

the expected value.

Finally, rStrawbery was run on this dataset both with and without the bias correction.

rStrawberry uses the R package qvalue (10) to convert the nominal p values to q values.

After intersecting with the 4468 genes, 12769 tested transcripts were obtained, 40 of which

are called significant at q value 0.01 using bias correction. The FDR level of rStrawberry

is around 0.29% which is well below the expected 1% level. To validate the effect of bias

correction, I also include the result of no bias correction (Table 4.1). The result shows that

without bias correction, rStrawberry produces a large number of false positives.

In summary, this result shows that rStrawberry and Cuffdiff 2 are able to control the

FDR at or below the expected level while DEXSeq fails to control the FDR using the 6-

sample GEUVAIDS data. However, these three methods have entirely different test units

and they also filter genes differentially. rStrawberry tests for differentially spliced tran-

scripts; Cuffdiff 2 tests for differentially spliced genes and DEXSeq tests for differentially

spliced exons.

Table 4.1 Multiple testing adjusted p values cumulative table. rStrawberry, Cuffdiff 2 and

DEXSeq were compared using 6 sample GEUVADIS data as a negative control,

where no differential alternative splicing are expected.

Method <1e-03 <0.01 <0.025 <0.05 <=1

rStrawberry 14 37 61 98 12769

rStrawberry(no bias correction) 122 287 420 556 12769

Cuffdiff 2 0 17 21 23 2895

DEXSeq 1876 2798 3436 4107 56350

4.3.3 A sensitivity analysis

To determine if the differential alternative splicing detection model of rStrawberry can

recover true positives, I performed a sensitivity analysis using a simulated RNA-Seq dataset.

This dataset was first used to benchmark differential alternative splicing methods (7), where

two conditions, mocked Arabidopsis heat-stress time points, each with three replicates were
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generated using our simulation pipeline. Around 10 million reads are mapped to multi-

isoform genes. rStrawberry, DEXSeq, DSGseq (14), and Cuffdiff 2 were ran in the same way

as for GEUVADIS data (section 4.3.2). All programs were run with the default parameters.

Because the four methods have different test units, we convert the transcript p values from

rStrawberry and exon p values from DEXSeq to genewise p values. For rStrawberry and

DEXSeq, the minimum p value among the isoforms or the exons that belong to a gene is

chosen to be the gene-level p value. Although DSGseq is considered as an event-centric

model (7), it generates genewise test statistics.

Fig. 4.5 shows the Receiver operating characteristic (ROC) curve using the p values (or

test statistic for DSGseq). Usually, people are more interested in ROC curve in the range

of false positive rate 0 - 0.2. Therefore we also show the partial ROC in Fig. 4.6. Table 4.2

shows the number of tested genes, full AUC (Area Under the Curves) statistics and partial

AUC of the four methods. From these results, we can see rStrawberry outperforms the

other three methods. The distance between the top 2 methods, rStrawberry and Cuffdiff

2, is small, partial AUC at 0.9648 vs. 0.9547. However, Cufflinks filters more genes than

rStrawberry, yielding a total 3603 tested genes vs. 3986 by rStrawberry. Transcript-centric

methods rely on accurate transcript expression estimations. And when a gene is lowly

expressed, those estimations are usually nor reliable and should not be used for differential

analysis. On the other hand, event-centric methods, such as DEXSeq and DSGseq, do not

need to deal with read assignment uncertainty and can test more genes.

Table 4.2 Area under the ROC curve (AUC) of the 4 methods were compared using simu-

lated Arabidopsis data. Different methods have a different test units and filters

which leads to different number of tested genes.

Cuffdiff 2 DEXSeq DSGseq rStrawberry

Full AUC 0.9721 0.9082 0.8682 0.9778

Partial AUC 0.9547 0.8857 0.8214 0.9648

Number of genes 3603 5048 5564 3986
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4.4 Conclusions and Discussion

Here, we present a novel method and R package called rStrawberry, which can detect

differential alternative splicing from two groups of RNA-Seq samples. To our knowledge,

rStrawberry is the first method that truly detects differential splicing at transcriptome level.

In other words, rStrawberry report exactly which transcripts are differentially spliced across

conditions. While other methods only reports either which genes are differentially spliced or

which AS events are detected, where an AS event usually involves more than one transcripts.

In addition, unlike other methods which process one gene at a time, rStrawberry generalizes

the concept of “gene”. For example, rStrawberry can group transcripts from an arbitrary

number of loci and treat them as in a “super group” and compare the relative abundance

of a transcript in that “super group” across conditions. As the knowledge about RNA

increases, the scope of alternative splicing might expand. For example, the “super group”

can be paralogues or gene families or pathways.

We have also demonstrated rStrawberry’s performance on alternative splicing detection

using both simulated data and real data. We benchmark its performance against Cuffdiff 2,

DEXSeq and DSGseq, the top 3 methods based on our previous study (7). Only rStrawberry

and Cuffdiff 2 are able to control the false discovery rate at expected levels using real data

and rStrawberry outperform Cuffdiff 2 using simulated data where we have the ground

truth.
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Figure 4.3 Predicted isoform fractions of gene USF2 before and after bias correction.

Totally 6 samples are used for comparison, ERR188021, ERR188052, and

ERR188088 from center 2 and ERR188204, ERR188 -317 and ERR188453 from

center 1. The colors sea green and chocolate represent short isoform and long

isoform respectively. The x-axis is a 2 by 2 factorial table of isoforms and

centers. Thus a total of 4 x-axis ticks are displayed, short isoform on the first

two ticks and long isoform on the last two ticks. For each tick, there are three

samples and a total of 6 points. The y-values of them represent the predicted

isoform fractions before and after bias correction. The open circle indicates be-

fore bias correction and the open triangle represents after bias correction. The

point-up or point-down of the triangles indicate the relative isoform fraction is

increased or decreased, respectively, after bias correction. It is clear that the

fraction of long isoform increases after bias correction and the amount of in-

crease is larger for center 1 than center 2. The paired t-test of the FPKM values

before and after bias correction for the long isoform is 0.02607 vs. 0.04808 for

center 1 and center 2 respectively. (8) has pointed out that the samples from

center 1 suffer a more dramatic loss of coverage than center 2 when it comes

to high-GC exons.
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Figure 4.4 Predicted subexon coverage on NUP107 gene of ERR188297 sample using

rStrawberry. The x-axis is the transcript position. And y-axis is the den-

sity so that the area under the curve is 1. The coverage is predicted only using

the sequence signals, such as GC-content. And we can see these signals can

explain, to some extent, the coverage variabilities of RNA-Seq.
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Figure 4.5 Full ROC curves of the differential alternative splicing detection results of 4

methods.
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Figure 4.6 Partial ROC curves (False positive rate 0 - 0.2) of the differential alternative

splicing detection results of 4 methods.
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CHAPTER 5. GENERAL CONCLUSIONS

5.1 Conclusions

This dissertation is focused on three RNA-Seq applications, transcript assembly, tran-

script quantification and detection of differential alternative splicing. The short read length

(usually 100-250 bp) of current RNA-Seq technology imposes multiple challenges for accu-

rately solving these three problems. First for assembly, due to the overlapping isoforms,

the transcript assembly graphs inevitably have more bubbles and branches, if compared

to genome assembly. And because no read can cover a whole transcript, phasing dis-

tant reads into overlapping transcripts is very challenging. Thus, the complexity of tran-

script assembly grows exponentially as the number of isoforms increases. To address these

challenges, Strawberry first utilizes the reference genome and state-of-the-art splice-aware

alignment algorithms. Based on the alignments, Strawberry first partitions the reads into

non-overlapping loci and assembles them simultaneously using multiple threads. More im-

portantly, the exon-intron structures and transcription direction can all be inferred from

the gapped alignments. Next, Strawberry converts splicing graphs into flow networks that

are tailored for paired-end reads to construct a parsimonious set of transcripts. The distant

reads are phased by the flow network algorithm. Based on our simulation results, Straw-

berry’s genome dependent assembly recovers more true transcripts while achieving the same

false discovery rate compared to two other leading methods.

The short reads also create challenges for transcript quantification as many reads align

ambiguously to the overlapping isoforms. This read assignment challenge often requires

solving a high-dimensional mixture model. In addition to the ambiguous assignment, new

gene isoforms are often discovered in RNA-Seq experiments and the annotation-dependent

transcript quantification methods described in chapter 2 fail to account for new isoforms and
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are thus significantly bias against known isoforms. Compared to the annotation-dependent

methods, the assembly step of strawberry can not only detect new isoform but also minimize

the annotation bias. In addition, the graph structures used in assembly can be seamlessly

propagated to quantification step to yield a highly efficient assemble-then-quantify workflow.

To assign reads to overlapping transcripts, the quantification step uses a latent class model,

where each read is assumed as coming from a mixture of classes (transcripts). Conditioning

on the latent class, the reads are assumed to be generated from a subexon path. Strawberry

uses a parametric distribution to model the subexon path probabilities, which allows being

further extended to a regression model. Using the same simulated data that is used for

benchmarking assembly, Strawberry outperforms Cufflinks and StringTie in terms of all

three metrics. Using the real data from a highly cited method comparison study, Strawberry

also beats Cufflinks and StringTie by convincing margins.

Altogether, Strawberry’s transcript assembly and quantification algorithms described

in chapter 3 are accurate, fast and scalable for a single sample of RNA-Seq, makes it an

intriguing candidate when processing large data set (e.g., > 100 million reads). It takes

12.35 min for Strawberry to process 100 million input RNA-Seq reads while a simple Linux

program wc takes 8.69 min. However, the quantification model in chapter 3 have certain

drawbacks when dealing with multiple samples and detecting differential splicing. First of

all, it is unable to account for coverage bias that can adversely affect the differential splicing

analysis. In addition, the model in chapter 3 is designed for single RNA-Seq sample and is

thus unable to borrow information across biological replicates and, most importantly, ad-

dress the count overdispersion problem. Thereby, to detect differential alternative splicing,

chapter 4 presents a more comprehensive and complex model that is based on the genera-

tive model in chapter 3. The new model uses a double multinomial logit regressions. One

multinomial logit regression is used to predict the differentially spliced transcripts across

conditions. The other is used to account for coverage bias that is often observed in real

RNA-Seq data. To overcome count overdispersion, Strawberry builds up a hierarchical
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model on the first multinomial logit regression model. The hyperpriors are estimated using

an empirical Bayes approach which borrows information across transcripts from multiple

loci. Finally, in chapter 4, I have shown that Strawberry is able to control the false discov-

ery rate using real data and recover true positives using simulated data when calling the

differential spliced transcripts.

The differential alternative splicing model of Strawberry has many novelties. First, it is

the first that simultaneously detects different splicing and estimates transcript abundances.

Secondly, Strawberry combines a bias correction step into the detection of differential alter-

native splicing. Although many transcript quantification methods employee bias correction

step, this feature has not been observed in differential alternative splicing detection meth-

ods. And the effect of coverage bias correction on differential splicing detection has not

been studied until Strawberry. Thirdly, unlike other methods, Strawberry does not need

to process one gene at a time. This allows Strawberry, potentially, to detect differentially

spliced transcripts within paralogues or gene families.

5.2 Future works

In chapter 4, I use a two-step estimation of the hyperpriors. However, it might be

better to integrate out the precision parameters. Currently, I have found that different

priors have a considerable effect on the power of detection. Therefore, the method for

estimating hyperpriors needs to be improved. Also, I have not fully utilized the power of

the Bayesian modeling by avoiding drawing samples from posteriors. Therefore it might be

worth trying the full Bayesian approach with MCMC sampling or variational Bayes if the

sampling is too slow.

Secondly, detecting changes in transcript relative abundances in a gene family or par-

alogues might be an interesting topic. Especially for plant’s genomes, where gene duplica-

tion is much more common than, say, mammalian genome. And, currently, the transcript

quantification model of Strawberry in chapter 3 is restricted to uniquely aligned reads so
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that the paralogues are avoided. However, the model in chapter 4 can group loci together

to form a “super locus” which can contain all duplicated genes. And this can be done with-

out a prior knowledge of the gene annotation by looking at non-uniquely mapped reads so

might be applicable to non-model organisms. However, the challenge is finding a meaningful

biological data set and hypothesis to test.

In terms of the implementation, the current implementation of the differential alternative

splicing detection model is written in R which is known to be slow. And the users have to

run two separate Strawberry C++ first and then rStrawberry, which is not user-friendly.

In the future, I will re-implement rStrawberry in C++ to yield a single unified software.
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APPENDIX A. ADDITIONAL MATERIAL

A.1 STAN model

STAN is used to estimate the posterior model 4.4. In particular, the point estimates of

parameters β and γ, as well as the hessian of β are obtained by STAN, which is written in

STAN language as follow:

data {

int<lower = 2> J ; // num samples

int<lower = 1> K; // num t r a n s c r i p t s

vector<lower = 0>[K] Y[ J ] ; // counts

vec to r [ J ] X[ J ] ; // p r e d i c t o r s

r ea l<lower = 0> a0 ; // f i x e d p r i o r

r ea l<lower = 0> b0 ; // f i x e d p r i o r

}

parameters {

matrix [K, J ] beta ;

vector<lower = 0> [K] gamma;

}

transformed parameters {

s implex [K] p i [ J ] ;

f o r ( j in 1 : J ) {

pi [ j ] = softmax ( beta ∗ X[ j ] ) ;

}
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f o r ( k in 1 :K) {

sigma [ k ] = 1 / gamma[ k ] ;

}

}

model {

// p r i o r s

gamma ˜ gamma( a0 , b0 ) ;

f o r ( k in 1 :K) {

beta [ k ] ˜ normal (0 , sigma [ k ] ) ;

}

f o r ( j in 1 : J ) {

f o r ( k in 1 :K) {

t a r g e t += Y[ j ] [ k ] ∗ l og ( p i [ j ] [ k ] ) ;

}

}

} .

A.2 Overdispersed RNA-Seq read counts

GEUVADIS (6) is a useful dataset to investigate technical variations, dispersion and

etc. because it contains five cell line samples which were sequenced 8 times (8 replicated

RNA-Seq samples) at 7 different labs.

I have taken one of the five biological samples, HG00117, and plotted gene-wise and

transcript-wise dispersion pattern. The dispersion pattern is illustrated in a mean-variance

relationship. In Fig. A.1, I plot the genewise log TPM variance vs. log TPM mean. Again,

TPM refers to Transcript Per Kilobase Million. The gene-wise TPM is directly calculated
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through the number of uniquely mapped reads. On the log scale, there seems to be a strong

linear trend. If we treat the variance, y, as a function of mean, x, it seems to me that it is

reasonable to use log linear model log y = a log x + b. It implies V ar(Y ) = Bµa, where Y

are the counts, B = eb, and µ is the mean.

Figure A.1 Gene-wise dispersion on biological sample HG00117. Each data point repre-

sents a gene. Mean and variance of TPM is calculated using all 8 replicates.

The red line is the best linear regression of variance on mean and the blue line

is the 45-degree angle straight line which indicates no overdispersion.

The same analyses is repeated for transcript-level TPM and I include only two-isoform

genes based on the RefSeq annotation (see Fig. A.2 The transcripts TPM is estimated by

Strawberry (1). The options “–no-assembly” and “-g” are used. This will skip the reference

based assembly and used the provided annotation (in this case, human RefSeq annotation)

for quantification. Again, I can see a similar pattern as gene-wise expression. The slope of

red line is larger than 45-degree and thus indicates overdispersion. Compare Fig. A.1 to A.2,

I see no obvious different between the gene-level dispersion and transcript-level dispersion.

My postulation is that because RNA-Seq directly sequence transcripts, the gene-level count



www.manaraa.com

149

is merely an aggregation effect of transcript-level count. I also replaced RPKM with TPM,

the result seems to be very similar (data not shown). Note that for all analyses, I excluded

the low expressed data by setting FPKM/RPKM and TPM cutoff at 1.

Figure A.2 Transcript-wise dispersion on biological sample HG00117. Each data point

represents a transcript. And only the transcripts from two-isoform genes are

used. Mean and variance of TPM is calculated using all 8 replicates. The red

line is the best linear regression of variance on mean and the blue line is the

45-degree angle straight line which indicates no overdispersion.
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